Reserve Capacity Design Of Piled Foundations For Deepwater Compliant Platforms

1988 ◽  
Author(s):  
J.M.E. Audibert ◽  
J.L. Mueller ◽  
S.R. Bamford ◽  
D. Bogard
1987 ◽  
Vol 26 (05) ◽  
pp. 192-197 ◽  
Author(s):  
T. Kreisig ◽  
P. Schmiedek ◽  
G. Leinsinger ◽  
K. Einhäupl ◽  
E. Moser

Using the 133Xe-DSPECT technique, quantitative measurements of regional cerebral blood flow (rCBF) were performed before and after provocation with acetazolamide (Diamox) i. v. in 32 patients without evidence of brain disease (normals). In 6 cases, additional studies were carried out to establish the time of maximal rCBF increase which was found to be approximately 15 min p. i. 1 g of Diamox increases the rCBF from 58 ±8 at rest to 73±5 ml/100 g/min. A Diamox dose of 2 g (9 cases) causes no further rCBF increase. After plotting the rCBF before provocation (rCBFR) and the Diamox-induced rCBF increase (reserve capacity, Δ rCBF) the regression line was Δ rCBF = −0,6 x rCBFR +50 (correlation coefficient: r = −0,77). In normals with relatively low rCBF values at rest, Diamox increases the reserve capacity much more than in normals with high rCBF values before provocation. It can be expected that this concept of measuring rCBF at rest and the reserve capacity will increase the sensitivity of distinguishing patients with reversible cerebrovascular disease (even bilateral) from normals.


2014 ◽  
Vol 134 (1) ◽  
pp. 57-63
Author(s):  
Akihiro Teguri ◽  
Shunsuke Kawachi ◽  
Jumpei Baba ◽  
Eisuke Shimoda ◽  
Takayuki Sugimoto

2016 ◽  
Vol 106 (10) ◽  
pp. 357-362
Author(s):  
Yudong MAO ◽  
Jianzhong LI

CivilEng ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 442-458
Author(s):  
Sandip Chhetri ◽  
Rachel A. Chicchi

Experimental testing of deformed rebar anchors (DRAs) has not been performed extensively, so there is limited test data to understand their failure behavior. This study aims to expand upon these limited tests and understand the behavior of these anchors, when loaded in tension. Analytical benchmark models were created using available test data and a parametric study of deformed rebar anchors was performed. Anchor diameter, spacing, embedment, and number of anchors were varied for a total of 49 concrete breakout simulations. The different failure modes of anchors were predicted analytically, which showed that concrete breakout failure is prominent in the DRA groups. The predicted concrete breakout values were consistent with mean and 5% fractile concrete capacities determined from the ACI concrete capacity design (CCD) method. The 5% fractile factor determined empirically from the simulation results was kc = 26. This value corresponds closely with kc = 24 specified in ACI 318-19 and ACI 349-13 for cast-in place anchors. The analysis results show that the ACI CCD formula can be conservatively used to design DRAs loaded in tension by applying a kc factor no greater than 26.


Author(s):  
Yusuke Ishida ◽  
Toshio Okada ◽  
Takayuki Kobayashi ◽  
Hiroyuki Uchino

AbstractIn the perioperative period, hypoxemia and hyperoxia are crucial factors that require attention, because they greatly affect patient prognoses. The pulse oximeter has been the only noninvasive monitor that can be used as a reference of oxygenation in current anesthetic management; however, in recent years, a new monitoring method that uses the oxygen reserve index (ORi™) has been developed by Masimo Corp. ORi is an index that reflects the state of moderate hyperoxia (partial pressure of arterial oxygen [PaO2] between 100 and 200 mmHg) using a non-unit scale between 0.00 and 1.00. ORi monitoring performed together with percutaneous oxygen saturation (SpO2) measurements may become an important technique in the field of anesthetic management, for measuring oxygenation reserve capacity. By measuring ORi, it is possible to predict hypoxemia and to detect hyperoxia at an early stage. In this review, we summarize the method of ORi, cautions for its use, and suitable cases for its use. In the near future, the monitoring of oxygen concentrations using ORi may become increasingly common for the management of respiratory function before, after, and during surgery.


2021 ◽  
Vol 199 ◽  
pp. 107393
Author(s):  
Arild Helseth ◽  
Mari Haugen ◽  
Hossein Farahmand ◽  
Birger Mo ◽  
Stefan Jaehnert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document