scholarly journals Analytical Investigation of Tension Loaded Deformed Rebar Anchors in Concrete

CivilEng ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 442-458
Author(s):  
Sandip Chhetri ◽  
Rachel A. Chicchi

Experimental testing of deformed rebar anchors (DRAs) has not been performed extensively, so there is limited test data to understand their failure behavior. This study aims to expand upon these limited tests and understand the behavior of these anchors, when loaded in tension. Analytical benchmark models were created using available test data and a parametric study of deformed rebar anchors was performed. Anchor diameter, spacing, embedment, and number of anchors were varied for a total of 49 concrete breakout simulations. The different failure modes of anchors were predicted analytically, which showed that concrete breakout failure is prominent in the DRA groups. The predicted concrete breakout values were consistent with mean and 5% fractile concrete capacities determined from the ACI concrete capacity design (CCD) method. The 5% fractile factor determined empirically from the simulation results was kc = 26. This value corresponds closely with kc = 24 specified in ACI 318-19 and ACI 349-13 for cast-in place anchors. The analysis results show that the ACI CCD formula can be conservatively used to design DRAs loaded in tension by applying a kc factor no greater than 26.

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Xiangzhong Guo ◽  
Wei Liu ◽  
Xiqing Li ◽  
Haowen Shi ◽  
Zhikun Song

AbstractPenetration and non-penetration lap laser welding is the joining method for assembling side facade panels of railway passenger cars, while their fatigue performances and the difference between them are not completely understood. In this study, the fatigue resistance and failure behavior of penetration 1.5+0.8-P and non-penetration 0.8+1.5-N laser welded lap joints prepared with 0.8 mm and 1.5 mm cold-rolled 301L plates were investigated. The weld beads showed a solidification microstructure of primary ferrite with good thermal cracking resistance, and their hardness was lower than that of the plates. The 1.5+0.8-P joint exhibited better fatigue resistance to low stress amplitudes, whereas the 0.8+1.5-N joint showed greater resistance to high stress amplitudes. The failure modes of 0.8+1.5-N and 1.5+0.8-P joints were 1.5 mm and 0.8 mm lower lap plate fracture, respectively, and the primary cracks were initiated at welding fusion lines on the lap surface. There were long plastic ribs on the penetration plate fracture, but not on the non-penetration plate fracture. The fatigue resistance stresses in the crack initiation area of the penetration and non-penetration plates calculated based on the mean fatigue limits are 408 MPa and 326 MPa, respectively, which can be used as reference stress for the fatigue design of the laser welded structures. The main reason for the difference in fatigue performance between the two laser welded joints was that the asymmetrical heating in the non-penetration plate thickness resulted in higher residual stress near the welding fusion line.


2016 ◽  
Vol 33 (6) ◽  
pp. 830-851 ◽  
Author(s):  
Soumen Kumar Roy ◽  
A K Sarkar ◽  
Biswajit Mahanty

Purpose – The purpose of this paper is to evolve a guideline for scientists and development engineers to the failure behavior of electro-optical target tracker system (EOTTS) using fuzzy methodology leading to success of short-range homing guided missile (SRHGM) in which this critical subsystems is exploited. Design/methodology/approach – Technology index (TI) and fuzzy failure mode effect analysis (FMEA) are used to build an integrated framework to facilitate the system technology assessment and failure modes. Failure mode analysis is carried out for the system using data gathered from technical experts involved in design and realization of the EOTTS. In order to circumvent the limitations of the traditional failure mode effects and criticality analysis (FMECA), fuzzy FMCEA is adopted for the prioritization of the risks. FMEA parameters – severity, occurrence and detection are fuzzifed with suitable membership functions. These membership functions are used to define failure modes. Open source linear programming solver is used to solve linear equations. Findings – It is found that EOTTS has the highest TI among the major technologies used in the SRHGM. Fuzzy risk priority numbers (FRPN) for all important failure modes of the EOTTS are calculated and the failure modes are ranked to arrive at important monitoring points during design and development of the weapon system. Originality/value – This paper integrates the use of TI, fuzzy logic and experts’ database with FMEA toward assisting the scientists and engineers while conducting failure mode and effect analysis to prioritize failures toward taking corrective measure during the design and development of EOTTS.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nadim S. Hmeidat ◽  
Bailey Brown ◽  
Xiu Jia ◽  
Natasha Vermaak ◽  
Brett Compton

Purpose Mechanical anisotropy associated with material extrusion additive manufacturing (AM) complicates the design of complex structures. This study aims to focus on investigating the effects of design choices offered by material extrusion AM – namely, the choice of infill pattern – on the structural performance and optimality of a given optimized topology. Elucidation of these effects provides evidence that using design tools that incorporate anisotropic behavior is necessary for designing truly optimal structures for manufacturing via AM. Design/methodology/approach A benchmark topology optimization (TO) problem was solved for compliance minimization of a thick beam in three-point bending and the resulting geometry was printed using fused filament fabrication. The optimized geometry was printed using a variety of infill patterns and the strength, stiffness and failure behavior were analyzed and compared. The bending tests were accompanied by corresponding elastic finite element analyzes (FEA) in ABAQUS. The FEA used the material properties obtained during tensile and shear testing to define orthotropic composite plies and simulate individual printed layers in the physical specimens. Findings Experiments showed that stiffness varied by as much as 22% and failure load varied by as much as 426% between structures printed with different infill patterns. The observed failure modes were also highly dependent on infill patterns with failure propagating along with printed interfaces for all infill patterns that were consistent between layers. Elastic FEA using orthotropic composite plies was found to accurately predict the stiffness of printed structures, but a simple maximum stress failure criterion was not sufficient to predict strength. Despite this, FE stress contours proved beneficial in identifying the locations of failure in printed structures. Originality/value This study quantifies the effects of infill patterns in printed structures using a classic TO geometry. The results presented to establish a benchmark that can be used to guide the development of emerging manufacturing-oriented TO protocols that incorporate directionally-dependent, process-specific material properties.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yonggang Xiao ◽  
Jubing Zhang ◽  
Jie Cao ◽  
Changhong Li

The prefabricated urban utility tunnels (UUTs) have many advantages such as short construction period, low cost, high quality, and small land occupation. However, there is still a lack of in-depth analysis of the mechanical performance of the prefabricated urban utility tunnel (UUT) structure with bolted connections under different working conditions. In this paper, the force performance of a prefabricated UUT in Tongzhou District, Beijing, was studied under different working conditions using two methods: field monitoring and numerical simulation. The multichannel strain monitor was used for monitoring, and the internal wall concrete and bolt strain change data under the two conditions of installation and backfill were obtained. Combined with the construction process of the UUTs, a three-dimensional numerical model was established by COMSOL, where the build-in bolt assembly was used to simulate the longitudinal connection of the tunnel. The simulation results were compared with the measured data to verify the rationality of the computational model. The simulation results showed that the concrete and bolts on the inner wall of the tunnel work well under the two conditions of installation and backfilling; The deformation of the top plate of the prefabricated tunnel was approximately parabolic, with the largest vertical displacement (0.37 mm) in the middle and the most sensitive to the vertical load in the central part of the roof. The central portion of the side wall had the largest displacement (0.17 mm) in the inner concave. The tensile stress of bolt 3 increased the most (30.75 MPa) but was still much smaller than the yield strength of the bolt. The concrete and bolts of the UUT were found to work well through force analysis under operating conditions. In conclusion, analysis of structural forces and deformation failure modes will help design engineers understand the basic mechanisms and select the appropriate UUT structure.


Author(s):  
Marcin Bielecki ◽  
Salvatore Costagliola ◽  
Piotr Gebalski

The paper deliberates vibration limits for non-rotating parts in application to industrial gas turbines. As a rule such limits follow ISO 10816-4 or API616, although in field operation it is not well known relationship between these limits and failure modes. In many situations, the reliability function is not well-defined, and more comprehensive methods of determining the harmful effects of support vibrations are desirable. In the first part, the undertaken approach and the results are illustrated based on the field and theoretical experience of the authors about the failure modes related to alarm level of vibrations. Here several failure modes and diagnostics observations are illustrated with the examples of real-life data. In the second part, a statistical approach based on correlation of support vs. shaft vibrations (velocity / displacement) is demonstrated in order to assess the risk of the bearing rub. The test data for few gas turbine models produced by General Electric Oil & Gas are statistically evaluated and allow to draw an experimentally based transfer function between vibrations recorded by non-contact and seismic probes. Then the vibration limit with objectives like bearing rub is scrutinized with aid of probabilistic tools. In the third part, the attention is given to a few examples of the support vibrations — among other gas turbine with rotors supported on flexible pedestals and baseplate. Here there is determined a transfer coefficient between baseplate and bearing vibrations for specific foundation configurations. Based on the test data screening as well as analysis and case studies thereof, the conclusions about more specific vibration limits in relation to the failure modes are drawn.


Author(s):  
P.L. Batov ◽  
E.N. Gurkin ◽  
S.O. Knyazev ◽  
D.L. Borisevitch

In this paper the model and the construction of a wideband microstrip X-band radiator of active phased antenna arrays have been presented. The basic demands to the radiator have been formulated. The results of computer electromagnetic simulation of the radiator in free space and in the infinite array have been given, as well as the results of radiator experimental testing in the waveguide simulator. The characteristics of a proposed radiator such as VSWR, decoupling coefficient and losses have been simulated and estimated experimentally on the test sample. Experiment has shown good agreement with numerical simulation results. Particularly, 20% bandwidth with VSWR no greater than 2 has been achieved. Sample testing in a waveguide simulator gives 0,5 dB loss (active and return loss in radiator without loss in simulator itself). Scan angle at 3 dB gain loss, as it follows from numerical simulation results, should be no less than ±40° or ±45° in the main planes. So, proposed microstrip radiator may be used for X-band active phased arrays, which should work in 20% bandwidth with steerable polarization.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Xinyu Liu ◽  
Zhende Zhu ◽  
Aihua Liu

Filling is commonly found in natural cracked rock mass. As the weakest part of the rock, the filling properties directly affect the rock deformation and strength, permeability, and so on and affect the safety and stability of the rock mass engineering. In this study, a single slit has been preset in sandstones and filled with different physical properties materials. Based on the laboratory triaxial seepage test, the permeability and strength characteristics of filled cracked sandstones are analyzed, and the failure modes are obtained. The main findings of this study are as follows: (1) The permeability coefficient peak value of the filled cracked rock appears before the stress peak. (2) At the same confining pressure growth rate, the peak stress growth rate of the filled cracked rock is generally higher than that of the intact rock and the strength growth rate of the cracked rock increases with the length of the fracture. The strength characteristics of the filling in the uniaxial compression tests and triaxial seepage tests are significantly affected by the hydraulic properties. (3) The strength and permeability coefficients of cracked rock filled with cement mortar are more sensitive to the change of confining pressure, while under the same condition, the ones of cracked rock filled with gypsum mortar are stable. (4) According to the failure mechanism, under the seepage stress, the secondary cracks can be divided into 3 types and the failure modes can be divided into 2 types.


2020 ◽  
Vol 32 (5) ◽  
pp. 707-724
Author(s):  
Xuzhong Su ◽  
Xinjin Liu

PurposeTensile property is one basic mechanics performance of the fabric. In general, not only the tensile values of the fabric are needed, but also the dynamic changing process under the tension is also needed. However, the dynamic tensile process cannot be included in the common testing methods by using the instruments after fabric weaving.Design/methodology/approachBy choosing the weft yarn and warp yarn in the fabric as the minimum modeling unit, 1:1 finite element model of the whole woven fabrics was built by using AutoCAD software according to the measured geometric parameters of the fabrics and mechanical parameters of yarns. Then, the fabric dynamic tensile process was simulated by using the ANSYS software. The stress–strain curve along the warp direction and shrinkage rate curve along the weft direction of the fabrics were simulated. Meanwhile, simulation results were verified by comparing to the testing results.FindingsIt is shown that there are four stages during the fabric tensile fracture process along the warp direction under the tension. The first stage is fabric elastic deformation. The second stage is fabric yield deformation, and the change rate of stress begins to slow down. The third stage is fiber breaking, and the change of stress fluctuates since the breaking time of the fibers is different. The fourth stage is fabric breaking.Originality/valueIn this paper, the dynamic tensile process of blended woven fabrics was studied by using finite element method. Although there are differences between the simulation results and experimental testing results, the overall tendency of simulation results is the same as the experimental testing results.


Sign in / Sign up

Export Citation Format

Share Document