Comparison of Respiratory Mechanics and Gas Exchange between Pressure-controlled and Volume-controlled Ventilation

1999 ◽  
Vol 46 (5) ◽  
pp. 662 ◽  
Author(s):  
Seong Han Jung ◽  
Won Jun Choi ◽  
Jung A Lee ◽  
Jin A Kim ◽  
Mun Woo Lee ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Xiao-Wei Liu ◽  
Yan Jin ◽  
Tao Ma ◽  
Bo Qu ◽  
Zhi Liu

This study was conducted to evaluate the effects of open endotracheal suctioning on gas exchange and respiratory mechanics in ARF patients under the modes of PCV or VCV. Ninety-six ARF patients were treated with open endotracheal suctioning and their variations in respiratory mechanics and gas exchange after the suctions were compared. Under PCV mode, compared with the initial level of tidal volume (VT), ARF patients showed 30.0% and 27.8% decrease at 1 min and 10 min, respectively. Furthermore, the initial respiratory system compliance (Crs) decreased by 29.6% and 28.5% at 1 min and 10 min, respectively. Under VCV mode, compared with the initial level, 38.6% and 37.5% increase in peak airway pressure (PAP) were found at 1 min and 10 min, respectively. Under PCV mode, the initial PaO2increased by 6.4% and 10.2 % at 3 min and 10 min, respectively, while 18.9% and 30.6% increase of the initial PaO2were observed under VCV mode. Summarily, endotracheal suctioning may impair gas exchange and decrease lung compliance in ARF patients receiving mechanical ventilation under both PCV and VCV modes, but endotracheal suctioning effects on gas exchange were more severe and longer-lasting under PCV mode than VCV.


2021 ◽  
Vol 10 (20) ◽  
pp. 4756
Author(s):  
Davide Chiumello ◽  
Andrea Meli ◽  
Tommaso Pozzi ◽  
Manuela Lucenteforte ◽  
Paolo Simili ◽  
...  

The most used types of mechanical ventilation are volume- and pressure-controlled ventilation, respectively characterized by a square and a decelerating flow waveform. Nowadays, the clinical utility of different inspiratory flow waveforms remains unclear. The aim of this study was to assess the effects of four different inspiratory flow waveforms in ARDS patients. Twenty-eight ARDS patients (PaO2/FiO2 182 ± 40 and PEEP 11.3 ± 2.5 cmH2O) were ventilated in volume-controlled ventilation with four inspiratory flow waveforms: square (SQ), decelerating (DE), sinusoidal (SIN), and trunk descending (TDE). After 30 min in each condition, partitioned respiratory mechanics and gas exchange were collected. The inspiratory peak flow was higher in the DE waveform compared to the other three waveforms, and in SIN compared to the SQ and TDE waveforms, respectively. The mean inspiratory flow was higher in the DE and SIN waveforms compared with TDE and SQ. The inspiratory peak pressure was higher in the SIN and SQ compared to the TDE waveform. Partitioned elastance was similar in the four groups; mechanical power was lower in the TDE waveform, while PaCO2 in DE. No major effect on oxygenation was found. The explored flow waveforms did not provide relevant changes in oxygenation and respiratory mechanics.


2021 ◽  
Vol 10 (6) ◽  
pp. 1276
Author(s):  
Volker Schick ◽  
Fabian Dusse ◽  
Ronny Eckardt ◽  
Steffen Kerkhoff ◽  
Simone Commotio ◽  
...  

For perioperative mechanical ventilation under general anesthesia, modern respirators aim at combining the benefits of pressure-controlled ventilation (PCV) and volume-controlled ventilation (VCV) in modes typically named “volume-guaranteed” or “volume-targeted” pressure-controlled ventilation (PCV-VG). This systematic review and meta-analysis tested the hypothesis that PCV-VG modes of ventilation could be beneficial in terms of improved airway pressures (Ppeak, Pplateau, Pmean), dynamic compliance (Cdyn), or arterial blood gases (PaO2, PaCO2) in adults undergoing elective surgery under general anesthesia. Three major medical electronic databases were searched with predefined search strategies and publications were systematically evaluated according to the Cochrane Review Methods. Continuous variables were tested for mean differences using the inverse variance method and 95% confidence intervals (CI) were calculated. Based on the assumption that intervention effects across studies were not identical, a random effects model was chosen. Assessment for heterogeneity was performed with the χ2 test and the I2 statistic. As primary endpoints, Ppeak, Pplateau, Pmean, Cdyn, PaO2, and PaCO2 were evaluated. Of the 725 publications identified, 17 finally met eligibility criteria, with a total of 929 patients recruited. Under supine two-lung ventilation, PCV-VG resulted in significantly reduced Ppeak (15 studies) and Pplateau (9 studies) as well as higher Cdyn (9 studies), compared with VCV [random effects models; Ppeak: CI −3.26 to −1.47; p < 0.001; I2 = 82%; Pplateau: −3.12 to −0.12; p = 0.03; I2 = 90%; Cdyn: CI 3.42 to 8.65; p < 0.001; I2 = 90%]. For one-lung ventilation (8 studies), PCV-VG allowed for significantly lower Ppeak and higher PaO2 compared with VCV. In Trendelenburg position (5 studies), this effect was significant for Ppeak only. This systematic review and meta-analysis demonstrates that volume-targeting, pressure-controlled ventilation modes may provide benefits with respect to the improved airway dynamics in two- and one-lung ventilation, and improved oxygenation in one-lung ventilation in adults undergoing elective surgery.


Sign in / Sign up

Export Citation Format

Share Document