scholarly journals Patent Filarial Infection Modulates Malaria-Specific Type 1 Cytokine Responses in an IL-10-Dependent Manner in a Filaria/Malaria-Coinfected Population

2009 ◽  
Vol 183 (2) ◽  
pp. 916-924 ◽  
Author(s):  
Simon Metenou ◽  
Benoit Dembélé ◽  
Siaka Konate ◽  
Housseini Dolo ◽  
Siaka Y. Coulibaly ◽  
...  
2002 ◽  
Vol 76 (19) ◽  
pp. 9657-9663 ◽  
Author(s):  
Palanivel Velupillai ◽  
John P. Carroll ◽  
Thomas L. Benjamin

ABSTRACT Mice of the PERA/Ei strain (PE mice) are highly susceptible to tumor induction by polyomavirus and transmit their susceptibility in a dominant manner in crosses with resistant C57BR/cdJ mice (BR mice). BR mice respond to polyomavirus infection with a type 1 cytokine response and develop effective cell-mediated immunity to the virus-induced tumors. By enumerating virus-specific CD8+ T cells and measuring cytokine responses, we show that the susceptibility of PE mice is due to the absence of a type 1 cytokine response and a concomitant failure to sustain virus-specific cytotoxic T lymphocytes. (PE × BR)F1 mice showed an initial type 1 response that became skewed toward type 2. Culture supernatants of splenocytes from infected PE mice stimulated in vitro contained high levels of interleukin-10 and no detectable gamma interferon, while those from BR mice showed the opposite pattern. Differences in the innate immune response to polyomavirus by antigen-presenting cells in PE mice and BR mice led to polarization of T-cell cytokine responses. Adherent cells from spleens of infected BR mice produced high levels of interleukin-12, while those from infected PE and F1 mice produced predominantly interleukin-10. PE and F1 mice infected by polyomavirus responded with increases in antigen-presenting cells expressing B7.2 costimulatory molecules, whereas BR mice responded with increased expression of B7.1. Administration of recombinant interleukin-12 along with virus resulted in partial protection of PE mice and provided complete protection against tumor development in F1 animals.


Immunity ◽  
1996 ◽  
Vol 4 (5) ◽  
pp. 471-481 ◽  
Author(s):  
Jeanne Magram ◽  
Suzanne E Connaughton ◽  
Rajeev R Warrier ◽  
Daisy M Carvajal ◽  
Chang-you Wu ◽  
...  

2000 ◽  
Vol 165 (3) ◽  
pp. 1506-1512 ◽  
Author(s):  
Paul S. Yamauchi ◽  
Joshua R. Bleharski ◽  
Koichi Uyemura ◽  
Jenny Kim ◽  
Peter A. Sieling ◽  
...  

2011 ◽  
Vol 31 (9) ◽  
pp. 661-669 ◽  
Author(s):  
Melody Sauerborn ◽  
Esther van de Vosse ◽  
Diyar Delawi ◽  
Jaap T. van Dissel ◽  
Vera Brinks ◽  
...  

1996 ◽  
Vol 795 (1 Interleukin 1) ◽  
pp. 60-70 ◽  
Author(s):  
JEANNE MAGRAM ◽  
JESSICA SFARRA ◽  
SUZANNE CONNAUGHTON ◽  
DENISE FAHERTY ◽  
RAJEEV WARRIER ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3455-3455
Author(s):  
Ashley A. Basiorka ◽  
Kathy L. McGraw ◽  
Lori N. Griner ◽  
Ling Zhang ◽  
Leentje De Ceuninck ◽  
...  

Abstract Abstract 3455 Background: Lenalidomide (LEN) and its analogue, pomalidomide, promote erythroid lineage competence and in vitro colony-forming capacity. In patients with non-del(5q) myelodysplastic syndrome (MDS), LEN restores erythropoiesis in a subset of patients (List et al. N Eng J Med 2005;352:549). Investigations by Ebert et al. showed that such responders to LEN treatment display repression of erythroid specific genes and that LEN restored transcriptional response to erythropoietin (Epo) (Ebert BL et al. PLoS Medicine 2008;5(2):e35), suggesting that LEN enhances Epo receptor (R) signal fidelity. We previously reported that LEN induces cellular expression of JAK2 associated EpoR in a concentration-dependent manner, however, the mechanism of regulation is unclear (Basiorka et al. Blood 2011,118: 2382a). Recent investigations implicated inhibition of the cereblon RING (really interesting new gene) finger domain containing E3-ubiquitin ligase complex as a key target of the immunomodulatory drugs (IMiDs) responsible for the teratogenic effects of thalidomide and the cytotoxic effects of LEN in multiple myeloma (Ito T et al. Science 2010; 327:1345–50; Zhu YW et al. Blood 2011;118:4771–9). We recently showed that LEN also interacts with the RING finger E3 ubiquitin ligase, murine double minute 2 (MDM2) to inhibit ligase ubiquitination and stabilize the protein (Wei et al. Oncogene, MS#ONC-2011-01840R, 2012). Because EpoR turnover is regulated by ubiquitination and proteasomal degradation, we evaluated the effects of LEN on the E3-ubiquitin ligase, RNF41, which regulates steady state or ligand independent, Janus kinase (JAK2) associated Type I receptor internalization (Wauman et al. J Cell Science. 2011;124:921–932). We hypothesized that LEN upregulates JAK2/EpoR expression through inhibition of RNF41 function, thereby increasing EpoR expression and enhancing JAK2 competent receptor signaling. Methods and Results: Treatment of the UT-7 erythroid progenitor cell line with cycloheximide ±1μM LEN showed that LEN stabilized cellular EpoR (T1/2, LEN >72h vs. 56h). To determine if the effects of LEN on receptor turnover are restricted to Type 1 cytokine receptors, we examined the effects of LEN on cellular expression of IL3-R (Type 1) and c-Kit (Type 2). LEN up-regulated IL3-R expression in a concentration-dependent fashion, whereas c-Kit expression was unchanged, confirming Type 1 receptor specificity. To determine if LEN alters EpoR/RNF41 interaction, we assessed protein association after LEN treatment. Immunoprecipitation (IP) of either EpoR or RNF41 followed by immunoblot (IB) for the binding partner showed that LEN promoted EpoR/RNF41 association in a concentration dependent manner. To investigate the effects of LEN on RNF41 function, we assessed protein specific ubiquitination after proteasomal inhibition with bortezomib followed by LEN treatment. IP of RNF41 and EpoR followed by ubiquitin IB showed that LEN inhibited RNF41 auto-ubiquitination in a concentration-dependent fashion accompanied by a corresponding decrease in EpoR ubiquitination, suggesting that LEN inhibits RNF41 ubiquitination to increase EpoR accumulation. To confirm that RNF41 is the principal target of LEN responsible for EpoR stabilization, we transfected HEK293T cells with EpoR and/or RNF41 expression vectors using the calcium phosphate method. Steady state EpoR expression was lower in EpoR/RNF41 cells compared with cells transfected with EpoR alone. Moreover, EpoR upregulation by LEN was abrogated in EpoR/RNF41 cells indicating that cellular RNF41 is a critical determinant of EpoR upregulation by LEN. Immunohistochemical staining of 16 bone marrow biopsies from non-del(5q) LEN-treated MDS patients are in progress to determine the relationship between cellular RNF41 level in erythroid precursors and clinical response. Conclusion: Our findings suggest that LEN acts as a broad RING finger E3-ubiquitin ligase inhibitor, whose targets extend to the Type 1 cytokine receptor specific, RNF41. RNF41 inhibition by LEN promotes accumulation of signaling competent JAK2/EpoR complexes that may augment Epo responsiveness. Further investigation is warranted to determine if erythroid expression level of RNF41 may serve as a biomarker for response to LEN in patients with non-del(5q) MDS. Disclosures: List: Celgene: Consultancy.


2015 ◽  
Vol 17 (5) ◽  
pp. 337-344 ◽  
Author(s):  
Natália B. Carvalho ◽  
Fernanda S. Oliveira ◽  
Fábio A.V. Marinho ◽  
Leonardo A. de Almeida ◽  
Júlia S. Fahel ◽  
...  

1999 ◽  
Vol 73 (6) ◽  
pp. 4575-4581 ◽  
Author(s):  
Masahiko Makino ◽  
Satoshi Shimokubo ◽  
Shin-Ichi Wakamatsu ◽  
Shuji Izumo ◽  
Masanori Baba

ABSTRACT The development of human T-lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is closely associated with the activation of T cells which are HTLV-1 specific but may cross-react with neural antigens (Ags). Immature dendritic cells (DCs), differentiated from normal donor monocytes by using recombinant granulocyte-macrophage colony-stimulating factor and recombinant interleukin-4, were pulsed with HTLV-1 in vitro. The pulsed DCs contained HTLV-1 proviral DNA and expressed HTLV-1 Gag Ag on their surface 6 days after infection. The DCs matured by lipopolysaccharides stimulated autologous CD4+ T cells and CD8+ T cells in a viral dose-dependent manner. However, the proliferation level of CD4+ T cells was five- to sixfold higher than that of CD8+ T cells. In contrast to virus-infected DCs, DCs pulsed with heat-inactivated virions activated only CD4+ T cells. To clarify the role of DCs in HAM/TSP development, monocytes from patients were cultured for 4 days in the presence of the cytokines. The expression of CD86 Ag on DCs was higher and that of CD1a Ag was more down-regulated than in DCs generated from normal monocytes. DCs from two of five patients expressed HTLV-1 Gag Ag. Furthermore, both CD4+ and CD8+ T cells from the patients were greatly stimulated by contact with autologous DCs pulsed with inactivated viral Ag as well as HTLV-1-infected DCs. These results suggest that DCs are susceptible to HTLV-1 infection and that their cognate interaction with T cells may contribute to the development of HAM/TSP.


Sign in / Sign up

Export Citation Format

Share Document