scholarly journals An Inducible Nitric Oxide Synthase-Luciferase Reporter System for In Vivo Testing of Anti-inflammatory Compounds in Transgenic Mice

2003 ◽  
Vol 170 (12) ◽  
pp. 6307-6319 ◽  
Author(s):  
Ning Zhang ◽  
Aneil Weber ◽  
Bonnie Li ◽  
Richard Lyons ◽  
Pamela R. Contag ◽  
...  
2005 ◽  
Vol 288 (1) ◽  
pp. F214-F220 ◽  
Author(s):  
Zhiyuan Yu ◽  
Xuefeng Xia ◽  
Bruce C. Kone

Inducible nitric oxide synthase (iNOS) is involved in many physiological and pathophysiological processes, including septic shock and acute kidney failure. Little is known about transcriptional regulation of the human iNOS gene in vivo under basal conditions or in sepsis. Accordingly, we developed transgenic mice carrying an insertional human iNOS promoter-reporter gene construct. In these mice, the proximal 8.3 kb of the human iNOS 5′-flanking region controls expression of the reporter gene of enhanced green fluorescent protein (EGFP). Patterns of human iNOS promoter/EGFP transgene expression in tissues were examined by fluorescence microscopy and immunoblotting. Endogenous murine iNOS was basally undetectable in kidney, intestine, spleen, heart, lung, liver, stomach, or brain. In contrast, EGFP from the transgene was basally expressed in kidney, brain, and spleen, but not the other tissues of the transgenic mice. Bacterial lipopolysaccharide induced endogenous iNOS expression in kidney, intestine, spleen, lung, liver, stomach, and heart, but not brain. In contrast, human iNOS promoter/EGFP transgene expression was induced above basal levels only in intestine, spleen, brain, stomach, and lung. Within kidney, human iNOS promoter/EGFP fluorescence was detected most prominently in proximal tubules of the outer cortex and collecting ducts and colocalized with endogenous mouse iNOS. Within the collecting duct, both endogenous iNOS and the human iNOS promoter/EGFP transgene were expressed in cells lacking aquaporin-2 immunoreactivity, consistent with expression in intercalated cells. Although it remains possible that essential regulatory elements reside in remote locations of the gene, our data concerning this 8.3-kb region provide the first in vivo evidence suggesting differential transcriptional control of the human iNOS gene in these organs and marked differences in transcriptional regulatory regions between the murine and human genes.


Circulation ◽  
1997 ◽  
Vol 96 (9) ◽  
pp. 3104-3111 ◽  
Author(s):  
Yoshihiro Fukumoto ◽  
Hiroaki Shimokawa ◽  
Toshiyuki Kozai ◽  
Toshiaki Kadokami ◽  
Kouichi Kuwata ◽  
...  

2018 ◽  
Vol 60 (No. 8) ◽  
pp. 359-366
Author(s):  
J. Li ◽  
B. Shi ◽  
S. Yan ◽  
L. Jin ◽  
Y. Guo ◽  
...  

The effects of chitosan on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) activity and gene expression in vivo or vitro were investigated in weaned piglets. In vivo, 180 weaned piglets were assigned to five dietary treatments with six replicates. The piglets were fed on a basal diet supplemented with 0 (control), 100, 500, 1000, and 2000 mg chitosan/kg feed, respectively. In vitro, the peripheral blood mononuclear cells (PBMCs) from a weaned piglet were cultured respectively with 0 (control), 40, 80, 160, and 320 µg chitosan/ml medium. Results showed that serum NO concentrations on days 14 and 28 and iNOS activity on day 28 were quadratically improved with increasing chitosan dose (P < 0.05). The iNOS mRNA expressions were linearly or quadratically enhanced in the duodenum on day 28, and were improved quadratically in the jejunum on days 14 and 28 and in the ileum on day 28 (P < 0.01). In vitro, the NO concentrations, iNOS activity, and mRNA expression in unstimulated PBMCs were quadratically enhanced by chitosan, but the improvement of NO concentrations and iNOS activity by chitosan were markedly inhibited by N-(3-[aminomethyl] benzyl) acetamidine (1400w) (P < 0.05). Moreover, the increase of NO concentrations, iNOS activity, and mRNA expression in PBMCs induced by lipopolysaccharide (LPS) were suppressed significantly by chitosan (P < 0.05). The results indicated that the NO concentrations, iNOS activity, and mRNA expression in piglets were increased by feeding chitosan in a dose-dependent manner. In addition, chitosan improved the NO production in unstimulated PBMCs but inhibited its production in LPS-induced cells, which exerted bidirectional regulatory effects on the NO production via modulated iNOS activity and mRNA expression.


1995 ◽  
Vol 181 (1) ◽  
pp. 63-70 ◽  
Author(s):  
N K Worrall ◽  
W D Lazenby ◽  
T P Misko ◽  
T S Lin ◽  
C P Rodi ◽  
...  

The role of nitric oxide in the immune response to allogeneic tissue was explored in an in vivo cardiac transplant model in the rat. Nitric oxide production during organ rejection was demonstrated by elevations in systemic serum nitrite/nitrate levels and by electron paramagnetic resonance spectroscopy. Messenger RNA for the inducible nitric oxide synthase enzyme was detected in the rejecting allografted heart, but not in the nonrejecting isografted heart. The enzyme was demonstrated to be biologically active by the in vitro conversion of L-arginine to L-citrulline and was immunohistochemically localized to the infiltrating inflammatory cells. Treatment with aminoguanidine, a preferential inhibitor of the inducible nitric oxide synthase isoform, prevented the increased nitric oxide production in the transplanted organ and significantly attenuated the pathogenesis of acute rejection. Aminoguanidine treatment prolonged graft survival, improved graft contractile function, and significantly reduced the histologic grade of rejection. These results suggest an important role for nitric oxide in mediating the immune response to allogeneic tissue. Inhibition of inducible nitric oxide synthase may provide a novel therapeutic modality in the management of acute transplant rejection and of other immune-mediated processes.


2009 ◽  
Vol 41 (3) ◽  
pp. 227-231 ◽  
Author(s):  
Yumi Moriyama ◽  
Jacqueline Nguyen ◽  
Margarete Akens ◽  
Eduardo H. Moriyama ◽  
Lothar Lilge

Sign in / Sign up

Export Citation Format

Share Document