scholarly journals Intranasal HIV-1-gp160-DNA/gp41 Peptide Prime-Boost Immunization Regimen in Mice Results in Long-Term HIV-1 Neutralizing Humoral Mucosal and Systemic Immunity

2004 ◽  
Vol 173 (11) ◽  
pp. 7078-7089 ◽  
Author(s):  
Claudia Devito ◽  
Bartek Zuber ◽  
Ulf Schröder ◽  
Reinhold Benthin ◽  
Kenji Okuda ◽  
...  
AIDS ◽  
1994 ◽  
Vol 8 (Supplement 4) ◽  
pp. S31
Author(s):  
G. Arendt ◽  
H. Hefter ◽  
H. Roick ◽  
H. -J. v. Giesen ◽  
St. Maus
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mayumi Imahashi ◽  
Hirotaka Ode ◽  
Ayumi Kobayashi ◽  
Michiko Nemoto ◽  
Masakazu Matsuda ◽  
...  

AbstractIn HIV-1-infected patients, antiretroviral therapy (ART) is a key factor that may impact commensal microbiota and cause the emergence of side effects. However, it is not fully understood how long-term ART regimens have diverse impacts on the microbial compositions over time. Here, we performed 16S ribosomal RNA gene sequencing of the fecal and salivary microbiomes in patients under different long-term ART. We found that ART, especially conventional nucleotide/nucleoside reverse transcriptase inhibitor (NRTI)-based ART, has remarkable impacts on fecal microbial diversity: decreased α-diversity and increased ß-diversity over time. In contrast, dynamic diversity changes in the salivary microbiome were not observed. Comparative analysis of bacterial genus compositions showed a propensity for Prevotella-enriched and Bacteroides-poor gut microbiotas in patients with ART over time. In addition, we observed a gradual reduction in Bacteroides but drastic increases in Succinivibrio and/or Megasphaera under conventional ART. These results suggest that ART, especially NRTI-based ART, has more suppressive impacts on microbiota composition and diversity in the gut than in the mouth, which potentially causes intestinal dysbiosis in patients. Therefore, NRTI-sparing ART, especially integrase strand transfer inhibitor (INSTI)- and/or non-nucleotide reverse transcriptase inhibitor (NNRTI)-containing regimens, might alleviate the burden of intestinal dysbiosis in HIV-1-infected patients under long-term ART.


2021 ◽  
Vol 22 (2) ◽  
pp. 912
Author(s):  
Nabila Seddiki ◽  
John Zaunders ◽  
Chan Phetsouphanh ◽  
Vedran Brezar ◽  
Yin Xu ◽  
...  

HIV-1 infection rapidly leads to a loss of the proliferative response of memory CD4+ T lymphocytes, when cultured with recall antigens. We report here that CD73 expression defines a subset of resting memory CD4+ T cells in peripheral blood, which highly express the α-chain of the IL-7 receptor (CD127), but not CD38 or Ki-67, yet are highly proliferative in response to mitogen and recall antigens, and to IL-7, in vitro. These cells also preferentially express CCR5 and produce IL-2. We reasoned that CD73+ memory CD4+ T cells decrease very early in HIV-1 infection. Indeed, CD73+ memory CD4+ T cells comprised a median of 7.5% (interquartile range: 4.5–10.4%) of CD4+ T cells in peripheral blood from healthy adults, but were decreased in primary HIV-1 infection to a median of 3.7% (IQR: 2.6–6.4%; p = 0.002); and in chronic HIV-1 infection to 1.9% (IQR: 1.1–3%; p < 0.0001), and were not restored by antiretroviral therapy. Moreover, we found that a significant proportion of CD73+ memory CD4+ T cells were skewed to a gut-homing phenotype, expressing integrins α4 and β7, CXCR3, CCR6, CD161 and CD26. Accordingly, 20% of CD4+ T cells present in gut biopsies were CD73+. In HIV+ subjects, purified CD73+ resting memory CD4+ T cells in PBMC were infected with HIV-1 DNA, determined by real-time PCR, to the same level as for purified CD73-negative CD4+ T cells, both in untreated and treated subjects. Therefore, the proliferative CD73+ subset of memory CD4+ T cells is disproportionately reduced in HIV-1 infection, but, unexpectedly, their IL-7 dependent long-term resting phenotype suggests that residual infected cells in this subset may contribute significantly to the very long-lived HIV proviral DNA reservoir in treated subjects.


Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 936-941 ◽  
Author(s):  
Magdalena Magierowska ◽  
Ioannis Theodorou ◽  
Patrice Debré ◽  
Françoise Sanson ◽  
Brigitte Autran ◽  
...  

Abstract Human immunodeficiency virus (HIV)-1–infected long-term nonprogressors (LT-NP) represent less than 5% of HIV-1–infected patients. In this work, we tried to understand whether combined genotypes of CCR5-▵32, CCR2-64I, SDF1-3′A and HLA alleles can predict the LT-NP status. Among the chemokine receptor genotypes, only the frequency of the CCR5-▵32 allele was significantly higher in LT-NP compared with the group of standard progressors. The predominant HLA alleles in LT-NP were HLA-A3, HLA-B14, HLA-B17, HLA-B27, HLA-DR6, and HLA-DR7. A combination of both HLA and chemokine receptor genotypes integrated in a multivariate logistic regression model showed that if a subject is heterozygous for CCR5-▵32 and homozygous for SDF1 wild type, his odds of being LT-NP are increased by 16-fold, by 47-fold when a HLA-B27 allele is present with HLA-DR6 absent, and by 47-fold also if at least three of the following alleles are present: HLA-A3, HLA-B14, HLA-B17, HLA-DR7. This model allowed a correct classification of 70% of LT-NPs and 81% of progressors, suggesting that the host’s genetic background plays an important role in the evolution of HIV-1. The chemokine receptor and chemokine genes along with the HLA genotype can serve as predictors of HIV-1 outcome for classification of HIV-1–infected subjects as LT-NPs or progressors.


2004 ◽  
Vol 6 (9) ◽  
pp. 799-805 ◽  
Author(s):  
A SAKURAI ◽  
A JERE ◽  
A YOSHIDA ◽  
T YAMADA ◽  
A IWAMOTO ◽  
...  
Keyword(s):  

PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e55791 ◽  
Author(s):  
Jin Yang ◽  
Zongxing Yang ◽  
Hangjun Lv ◽  
Yi Lou ◽  
Juan Wang ◽  
...  
Keyword(s):  

2010 ◽  
Vol 84 (7) ◽  
pp. 3576-3585 ◽  
Author(s):  
Marit J. van Gils ◽  
Evelien M. Bunnik ◽  
Judith A. Burger ◽  
Yodit Jacob ◽  
Becky Schweighardt ◽  
...  

ABSTRACT A substantial proportion of human immunodeficiency virus type 1 (HIV-1)-infected individuals has cross-reactive neutralizing activity in serum, with a similar prevalence in progressors and long-term nonprogressors (LTNP). We studied whether disease progression in the face of cross-reactive neutralizing serum activity is due to fading neutralizing humoral immunity over time or to viral escape. In three LTNP and three progressors, high-titer cross-reactive HIV-1-specific neutralizing activity in serum against a multiclade pseudovirus panel was preserved during the entire clinical course of infection, even after AIDS diagnosis in progressors. However, while early HIV-1 variants from all six individuals could be neutralized by autologous serum, the autologous neutralizing activity declined during chronic infection. This could be attributed to viral escape and the apparent inability of the host to elicit neutralizing antibodies to the newly emerging viral escape variants. Escape from autologous neutralizing activity was not associated with a reduction in the viral replication rate in vitro. Escape from autologous serum with cross-reactive neutralizing activity coincided with an increase in the length of the variable loops and in the number of potential N-linked glycosylation sites in the viral envelope. Positive selection pressure was observed in the variable regions in envelope, suggesting that, at least in these individuals, these regions are targeted by humoral immunity with cross-reactive potential. Our results may imply that the ability of HIV-1 to rapidly escape cross-reactive autologous neutralizing antibody responses without the loss of viral fitness is the underlying explanation for the absent effect of potent cross-reactive neutralizing humoral immunity on the clinical course of infection.


Sign in / Sign up

Export Citation Format

Share Document