scholarly journals Epigenetic Basis for the Transcriptional Hyporesponsiveness of the Human Inducible Nitric Oxide Synthase Gene in Vascular Endothelial Cells

2005 ◽  
Vol 175 (6) ◽  
pp. 3846-3861 ◽  
Author(s):  
Gary C. Chan ◽  
Jason E. Fish ◽  
Imtiaz A. Mawji ◽  
Desmond D. Leung ◽  
Alisa C. Rachlis ◽  
...  
Pteridines ◽  
2002 ◽  
Vol 13 (4) ◽  
pp. 126-132 ◽  
Author(s):  
Nicolas J Mueller ◽  
Roland Β Walter ◽  
Philippe Linscheid ◽  
Andreas Schaffner ◽  
Gabriele Schoedon

Abstract In the vasculature, a physiologic production of nitric oxide (NO) is maintained by endothelial nitric oxide synthase (eNOS). Induction of inducible nitric oxide synthase (ÍNOS) under inflammatory conditions (e.g. septic shock) resulting in high levels of nitric oxide (NO) is believed to be partly responsible for the pathophysiologic changes in the vascular system that occur under inflammatory conditions (e.g. septic shock). Both NOS isoforms are dependent on the obligatory cofactor tetrahydrobiopterin (BH4). We investigated the selectivity and potency of the BH4 analogues 4-amino-BH4 and 5-methyl-BH4 in inhibiting eNOS and iNOS in a murine vascular endothelial cell (MVEC) model expressing either eNOS or iNOS under physiologic and inflammatory conditions, respectively. Exogenous BH4 and its precursor sepiapterin both enhanced physiologic eNOS activity in resting MVEC, while 4-amino-BH4 slightly inhibited eNOS. 5-methyl-BH4 did not have any effect on eNOS. BH4, sepi - apterin, and 5-methyi-BH4 had no effect on iNOS in inflammatory activated MVEC. In contrast, 4-amino-BH4 selectively inhibited iNOS with a potency comparable to the unselective NOS inhibitor Νω-monomethyl-L-argimne (L-NMMA). The present study demonstrates that 4-amino-BH4 selectively and potently inhibits iNOS in vascular endothelial cells, while its effect on eNOS is minimal. The selective inhibition of iNOS is a promising strategy for the treatment of inflammatory conditions with high output of NO. Further in vivo studies are required to determine whether inhibition of NO production by analogues of BH4 offers any advantage compared to inhibition by L-arginine analogues.


2014 ◽  
Vol 306 (3) ◽  
pp. H356-H362 ◽  
Author(s):  
Yingjie Chen ◽  
Ping Zhang ◽  
Jingxin Li ◽  
Xin Xu ◽  
Robert J. Bache

Following coronary artery occlusion growth of collateral vessels can provide an effective blood supply to the dependent myocardium. The ischemia, which results in growth of collateral vessels, recruits an inflammatory response with expression of cytokines and growth factors, upregulation of endothelial nitric oxide (NO) synthase (eNOS) in vascular endothelial cells, and expression of inducible nitric oxide synthase (iNOS) in both vessels and cardiac myocytes. Because NO is a potent collateral vessel dilator, this study examined whether NO derived from iNOS or constitutive NOS regulates myocardial blood flow (MBF) in the collateral region. Nonselective NOS inhibition with NG-nitro-l-arginine (LNA) caused vasoconstriction with a significant decrease in MBF to the collateral region during exercise. In contrast, the highly selective iNOS inhibitor 1400W caused a 21 ± 5% increase of MBF in the collateral region. This increase in MBF following selective iNOS blockade was proportionate to an increase in myocardial O2 consumption (MV̇o2). The results suggest that NO produced by iNOS inhibits MV̇o2 in the collateralized region, so that the increase in MBF following iNOS blockade was the result of metabolic vasodilation secondary to an increase in MV̇o2. Thus the coordinated expression of iNOS to restrain MV̇o2 and eNOS to maintain collateral vasodilation act to optimize the O2 supply-demand relationship and protect the collateralized myocardium from ischemia.


2020 ◽  
Vol 21 (8) ◽  
pp. 2798
Author(s):  
Alessandra Cazzaniga ◽  
Roberta Scrimieri ◽  
Elisa Giani ◽  
Gian Vincenzo Zuccotti ◽  
Jeanette A. M. Maier

Type 1 Diabetes Mellitus (T1D) is associated with accelerated atherosclerosis that is responsible for high morbidity and mortality. Endothelial hyperpermeability, a feature of endothelial dysfunction, is an early step of atherogenesis since it favours intimal lipid uptake. Therefore, we tested endothelial leakage by loading the sera from T1D patients onto cultured human endothelial cells and found it increased by hyperglycaemic sera. These results were phenocopied in endothelial cells cultured in a medium containing high concentrations of glucose, which activates inducible nitric oxide synthase with a consequent increase of nitric oxide. Inhibition of the enzyme prevented high glucose-induced hyperpermeability, thus pointing to nitric oxide as the mediator involved in altering the endothelial barrier function. Since nitric oxide is much higher in sera from hyperglycaemic than normoglycaemic T1D patients, and the inhibition of inducible nitric oxide synthase prevents sera-dependent increased endothelial permeability, this enzyme might represent a promising biochemical marker to be monitored in T1D patients to predict alterations of the vascular wall, eventually promoting intimal lipid accumulation.


Sign in / Sign up

Export Citation Format

Share Document