p38 MAPK Activity Is Required to Prevent Hyperactivation of NLRP3 Inflammasome

2021 ◽  
pp. ji2000416
Author(s):  
Jin Na Shin ◽  
Lang Rao ◽  
Youbao Sha ◽  
Elmoataz Abdel Fattah ◽  
Joseph Hyser ◽  
...  
Blood ◽  
1997 ◽  
Vol 89 (1) ◽  
pp. 227-234 ◽  
Author(s):  
Dharminder Chauhan ◽  
Surender Kharbanda ◽  
Atsushi Ogata ◽  
Mitsuyoshi Urashima ◽  
Gerrard Teoh ◽  
...  

Abstract Fas belongs to the family of type-1 membrane proteins that transduce apoptotic signals. In the present studies, we characterized signaling during Fas-induced apoptosis in RPMI-8226 and IM-9 multiple myeloma (MM) derived cell lines as well as patient plasma cell leukemia cells. Treatment with anti-Fas (7C11) monoclonal antibody (MoAb) induced apoptosis, evidenced by internucleosomal DNA fragmentation and propidium iodide staining, and was associated with increased expression of c-jun early response gene. We also show that anti-Fas MoAb treatment is associated with activation of stress-activated protein kinase (SAPK) and p38 mitogen-activated protein kinase (MAPK); however, no detectable increase in extracellular signal-regulated kinases (ERK1 and ERK2) activity was observed. Because interleukin-6 (IL-6) is a growth factor for MM cells and inhibits apoptosis induced by dexamethasone and serum starvation, we examined whether IL-6 affects anti-Fas MoAb-induced apoptosis and activation of SAPK or p38 MAPK in MM cells. Culture of MM cells with IL-6 before treatment with anti-Fas MoAb significantly reduced both DNA fragmentation and activation of SAPK, without altering induction of p38 MAPK activity. These results therefore suggest that anti-Fas MoAb-induced apoptosis in MM cells is associated with activation of SAPK, and that IL-6 may both inhibit apoptosis and modulate SAPK activity.


2015 ◽  
Vol 593 (24) ◽  
pp. 5269-5282 ◽  
Author(s):  
Petra Dames ◽  
Theresa Bergann ◽  
Anja Fromm ◽  
Roland Bücker ◽  
Christian Barmeyer ◽  
...  

2003 ◽  
Vol 270 (19) ◽  
pp. 3891-3903 ◽  
Author(s):  
Merlijn Bazuine ◽  
D. Margriet Ouwens ◽  
Daan S. Gomes de Mesquita ◽  
J. Antonie Maassen

2020 ◽  
Author(s):  
Pablo Bora ◽  
Lenka Gahurova ◽  
Tomáš Mašek ◽  
Andrea Hauserova ◽  
David Potěšil ◽  
...  

AbstractBackgroundp38-MAPKs are stress-activated kinases necessary for placental development and nutrient and oxygen transfer during murine post-implantation development. In preimplantation development, p38-MAPK activity is required for blastocyst formation. Additionally, we have previously reported its role in regulating specification of inner cell mass (ICM) towards primitive endoderm (PrE), although a comprehensive mechanistic understanding is currently limited. Adopting live embryo imaging, proteomic and transcriptomic approaches, we report experimental data that directly address this deficit.ResultsChemical inhibition of p38-MAPK activity during blastocyst maturation causes impaired blastocyst cavity expansion, most evident between the third and tenth hours post inhibition onset. We identify an overlapping minimal early blastocyst maturation window of p38-MAPKi inhibition (p38-MAPKi) sensitivity, that is sufficient to impair PrE cell fate by the late blastocyst (E4.5) stage. Comparative proteomic analyses reveal substantial downregulation of ribosomal proteins, the mRNA transcripts of which are also significantly upregulated. Ontological analysis of the differentially expressed transcriptome during this developmental period reveals “translation” related gene transcripts as being most significantly, yet transiently, affected by p38-MAPKi. Moreover, combined assays consistently report concomitant reductions in de novo translation that are associated with accumulation of unprocessed rRNA precursors. Using a phosphoproteomic approach, ± p38-MAPKi, we identified Mybpp1a, an rRNA transcription and processing regulator gene, as a potential p38-MAPK effector. We report that siRNA mediated clonal knockdown of Mybpp1a is associated with significantly diminished PrE contribution. Lastly, we show that defective PrE specification caused by p38-MAPKi (but not MEK/ERK signalling inhibition) can be partially rescued by activating the archetypal mTOR mediated translation regulatory pathway.ConclusionsActivated p38-MAPK controls blastocyst maturation in an early and distinctly transient developmental window by regulating gene functionalities related to translation, that creates a permissive environment for appropriate specification of ICM cell fate.


Oncotarget ◽  
2017 ◽  
Vol 8 (25) ◽  
pp. 40817-40831 ◽  
Author(s):  
Jung Hwa Ko ◽  
Sun-Ok Yoon ◽  
Hyun Ju Lee ◽  
Joo Youn Oh

2001 ◽  
Vol 1 ◽  
pp. 116-116
Author(s):  
Maria Alvarado-Kristensson ◽  
M. Isabella Poumlrn-Ares ◽  
Simone Grethe ◽  
David Smith ◽  
Limin Zheng ◽  
...  

2014 ◽  
Vol 306 (9) ◽  
pp. F1039-F1046 ◽  
Author(s):  
Sweaty Koul ◽  
Lakshmipathi Khandrika ◽  
Thomas J. Pshak ◽  
Naoko Iguchi ◽  
Mintu Pal ◽  
...  

The role of inflammation in oxalate-induced nephrolithiasis is debated. Our gene expression study indicated an increase in interleukin-2 receptor β (IL-2Rβ) mRNA in response to oxalate (Koul S, Khandrika L, Meacham RB, Koul HK. PLoS ONE 7: e43886, 2012). Herein, we evaluated IL-2Rβ expression and its downstream signaling pathway in HK-2 cells in an effort to understand the mechanisms of oxalate nephrotoxicity. HK-2 cells were exposed to oxalate for various time points in the presence or absence of SB203580, a specific p38 MAPK inhibitor. Gene expression data were analyzed by Ingenuity Pathway Analysis software. mRNA expression was quantitated via real-time PCR, and changes in protein expression/kinase activation were analyzed by Western blotting. Exposure of HK-2 cells to oxalate resulted in increased transcription of IL-2Rβ mRNA and increased protein levels. Oxalate treatment also activated the IL-2Rβ signaling pathway (JAK1/STAT5 phosphorylation). Moreover, the increase in IL-2Rβ protein was dependent upon p38 MAPK activity. These results suggest that oxalate-induced activation of the IL-2Rβ pathway may lead to a plethora of cellular changes, the most common of which is the induction of inflammation. These results suggest a central role for the p38 MAPK pathway in mediating the effects of oxalate in renal cells, and additional studies may provide the key to unlocking novel biochemical targets in stone disease.


Sign in / Sign up

Export Citation Format

Share Document