scholarly journals p38-MAPK mediated rRNA processing and translation regulation enables PrE differentiation during mouse blastocyst maturation

2020 ◽  
Author(s):  
Pablo Bora ◽  
Lenka Gahurova ◽  
Tomáš Mašek ◽  
Andrea Hauserova ◽  
David Potěšil ◽  
...  

AbstractBackgroundp38-MAPKs are stress-activated kinases necessary for placental development and nutrient and oxygen transfer during murine post-implantation development. In preimplantation development, p38-MAPK activity is required for blastocyst formation. Additionally, we have previously reported its role in regulating specification of inner cell mass (ICM) towards primitive endoderm (PrE), although a comprehensive mechanistic understanding is currently limited. Adopting live embryo imaging, proteomic and transcriptomic approaches, we report experimental data that directly address this deficit.ResultsChemical inhibition of p38-MAPK activity during blastocyst maturation causes impaired blastocyst cavity expansion, most evident between the third and tenth hours post inhibition onset. We identify an overlapping minimal early blastocyst maturation window of p38-MAPKi inhibition (p38-MAPKi) sensitivity, that is sufficient to impair PrE cell fate by the late blastocyst (E4.5) stage. Comparative proteomic analyses reveal substantial downregulation of ribosomal proteins, the mRNA transcripts of which are also significantly upregulated. Ontological analysis of the differentially expressed transcriptome during this developmental period reveals “translation” related gene transcripts as being most significantly, yet transiently, affected by p38-MAPKi. Moreover, combined assays consistently report concomitant reductions in de novo translation that are associated with accumulation of unprocessed rRNA precursors. Using a phosphoproteomic approach, ± p38-MAPKi, we identified Mybpp1a, an rRNA transcription and processing regulator gene, as a potential p38-MAPK effector. We report that siRNA mediated clonal knockdown of Mybpp1a is associated with significantly diminished PrE contribution. Lastly, we show that defective PrE specification caused by p38-MAPKi (but not MEK/ERK signalling inhibition) can be partially rescued by activating the archetypal mTOR mediated translation regulatory pathway.ConclusionsActivated p38-MAPK controls blastocyst maturation in an early and distinctly transient developmental window by regulating gene functionalities related to translation, that creates a permissive environment for appropriate specification of ICM cell fate.

Open Biology ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 210092
Author(s):  
Pablo Bora ◽  
Lenka Gahurova ◽  
Andrea Hauserova ◽  
Martina Stiborova ◽  
Rebecca Collier ◽  
...  

Successful navigation of the mouse preimplantation stages of development, during which three distinct blastocyst lineages are derived, represents a prerequisite for continued development. We previously identified a role for p38-mitogen-activated kinases (p38-MAPK) regulating blastocyst inner cell mass (ICM) cell fate, specifically primitive endoderm (PrE) differentiation, that is intimately linked to rRNA precursor processing, polysome formation and protein translation regulation. Here, we develop this work by assaying the role of DEAD-box RNA helicase 21 (DDX21), a known regulator of rRNA processing, in the context of p38-MAPK regulation of preimplantation mouse embryo development. We show nuclear DDX21 protein is robustly expressed from the 16-cell stage, becoming exclusively nucleolar during blastocyst maturation, a localization dependent on active p38-MAPK. siRNA-mediated clonal Ddx21 knockdown within developing embryos is associated with profound cell-autonomous and non-autonomous proliferation defects and reduced blastocyst volume, by the equivalent peri-implantation blastocyst stage. Moreover, ICM residing Ddx21 knockdown clones express the EPI marker NANOG but rarely express the PrE differentiation marker GATA4. These data contribute further significance to the emerging importance of lineage-specific translation regulation, as identified for p38-MAPK, during mouse preimplantation development.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Pablo Bora ◽  
Lenka Gahurova ◽  
Tomáš Mašek ◽  
Andrea Hauserova ◽  
David Potěšil ◽  
...  

AbstractSuccessful specification of the two mouse blastocyst inner cell mass (ICM) lineages (the primitive endoderm (PrE) and epiblast) is a prerequisite for continued development and requires active fibroblast growth factor 4 (FGF4) signaling. Previously, we identified a role for p38 mitogen-activated protein kinases (p38-MAPKs) during PrE differentiation, but the underlying mechanisms have remained unresolved. Here, we report an early blastocyst window of p38-MAPK activity that is required to regulate ribosome-related gene expression, rRNA precursor processing, polysome formation and protein translation. We show that p38-MAPK inhibition-induced PrE phenotypes can be partially rescued by activating the translational regulator mTOR. However, similar PrE phenotypes associated with extracellular signal-regulated kinase (ERK) pathway inhibition targeting active FGF4 signaling are not affected by mTOR activation. These data indicate a specific role for p38-MAPKs in providing a permissive translational environment during mouse blastocyst PrE differentiation that is distinct from classically reported FGF4-based mechanisms.


2021 ◽  
Author(s):  
Pablo Bora ◽  
Lenka Gahurova ◽  
Andrea Hauserova ◽  
Martina Stiborova ◽  
Rebecca Collier ◽  
...  

AbstractSuccessful navigation of the mouse preimplantation stages of development, during which three distinct blastocyst lineages are derived, represents a prerequisite for continued development. We previously identified a role for p38-mitogen-activated kinases (p38-MAPK) regulating blastocyst inner cell mass (ICM) cell-fate, specifically primitive endoderm (PrE) differentiation, that is intimately linked to rRNA precursor processing, polysome formation and protein translation regulation. Here, we develop this work by assaying the role of DEAD-box RNA helicase 21 (Ddx21), a known regulator of rRNA processing, in the context of p38-MAPK regulation of preimplantation mouse embryo development. We show nuclear Ddx21 protein is robustly expressed from the 16-cell stage, becoming exclusively nucleolar during blastocyst maturation; a localisation dependent on active p38-MAPK. Efficient siRNA mediated clonal Ddx21 knockdown within developing embryos is associated with profound cell autonomous and non-autonomous proliferation defects and reduced blastocyst volume, by the equivalent peri-implantation blastocyst stage. Moreover, ICM residing Ddx21 knockdown clones express the EPI marker NANOG but rarely express the PrE differentiation marker GATA4. These data contribute extra significance to emerging importance of lineage specific translation regulation, as identified for p38-MAPK, during mouse preimplantation development.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tim Liebisch ◽  
Armin Drusko ◽  
Biena Mathew ◽  
Ernst H. K. Stelzer ◽  
Sabine C. Fischer ◽  
...  

AbstractDuring the mammalian preimplantation phase, cells undergo two subsequent cell fate decisions. During the first decision, the trophectoderm and the inner cell mass are formed. Subsequently, the inner cell mass segregates into the epiblast and the primitive endoderm. Inner cell mass organoids represent an experimental model system, mimicking the second cell fate decision. It has been shown that cells of the same fate tend to cluster stronger than expected for random cell fate decisions. Three major processes are hypothesised to contribute to the cell fate arrangements: (1) chemical signalling; (2) cell sorting; and (3) cell proliferation. In order to quantify the influence of cell proliferation on the observed cell lineage type clustering, we developed an agent-based model accounting for mechanical cell–cell interaction, i.e. adhesion and repulsion, cell division, stochastic cell fate decision and cell fate heredity. The model supports the hypothesis that initial cell fate acquisition is a stochastically driven process, taking place in the early development of inner cell mass organoids. Further, we show that the observed neighbourhood structures can emerge solely due to cell fate heredity during cell division.


Development ◽  
1991 ◽  
Vol 113 (3) ◽  
pp. 815-824 ◽  
Author(s):  
M.B. Rogers ◽  
B.A. Hosler ◽  
L.J. Gudas

We have previously isolated a cDNA clone for a gene whose expression is reduced by retinoic acid (RA) treatment of F9 embryonal carcinoma cells. The nucleotide sequence indicated that this gene, Rex-1, encodes a zinc-finger protein and thus may be a transcriptional regulator. The Rex-1 message level is high in two lines of embryonic stem cells (CCE and D3) and is reduced when D3 cells are induced to differentiate using four different growth conditions. As expected for a stem-cell-specific message, Rex-1 mRNA is present in the inner cell mass (ICM) of the day 4.5 mouse blastocyst. It is also present in the polar trophoblast of the blastocyst. One and two days later, Rex-1 message is found in the ectoplacental cone and extraembryonic ectoderm of the egg cylinder (trophoblast-derived tissues), but its abundance is much reduced in the embryonic ectoderm which is directly descended from the ICM. Rex-1 is expressed in the day 18 placenta (murine gestation is 18 days), a tissue which is largely derived from trophoblast. The only tested adult tissue that contains detectable amounts of Rex-1 mRNA is the testis. In situ hybridization and northern analyses of RNA from germ-cell-deficient mouse testis and stage-specific germ cell preparations suggest that Rex-1 expression is limited to spermatocytes (germ cells undergoing meiosis). These results suggest that Rex-1 is involved in trophoblast development and spermatogenesis, and is a useful marker for studies of early cell fate determination in the ICM.


2009 ◽  
Vol 21 (9) ◽  
pp. 21
Author(s):  
J. M. Campbell ◽  
I. Vassiliev ◽  
M. B. Nottle ◽  
M. Lane

Human ESCs are produced from embryos donated at the mid-stage of pre-implantation development. This cryostorage reduced viability. However, it has been shown that this can be improved by the addition of growth factors to culture medium. The aim of the present study was to examine whether the addition of insulin to embryo culture medium from the 8-cell stage of development increases the number of ES cell progenitor cells in the epiblast in a mouse model. In vivo produced mouse zygotes (C57Bl6 strain) were cultured in G1 medium for 48h to the 8-cell stage, followed by culture in G2 supplemented with insulin (0, 0.17, 1.7 and 1700pM) for 68h, at 37 o C , in 5% O2, 6%CO2, 89% N2 . The number of cells in the inner cell mass (ICM) and epiblast was determined by immunohistochemical staining for Oct4 and Nanog. ICM cells express Oct4, epiblast cells express both Oct4 and Nanog. The addition of insulin at the concentrations examined did not increase the ICM. However, at 1.7pM insulin increased the number of epiblast cells (6.6±0.5 cells vs 4.1±0.5, P=0.001) in the ICM, which increased the proportion of the ICM that was epiblast (38.9±3.7% compared to 25.8±3.4% in the control P=0.01). This indicates that the increase in the epiblast is brought about by a shift in cell fate as opposed to an increase in cell division. The effect of insulin on the proportion of cells in the epiblast was investigated using inhibitors of phosphoinositide3-kinase (PI3K) (LY294002, 50µM); one of insulin's main second messengers, and p53 (pifithrin-α, 30µg/ml); a pro-apoptotic protein inactivated by PI3K. Inhibition of PI3K eliminated the increase caused by insulin (4.5±0.3 cells versus 2.2±0.3 cells, P<0.001), while inhibition of p53 increased the epiblast cell number compared to the control (7.1±0.8 and 4.1±0.7 respectively P=0.001). This study shows that insulin increases epiblast cell number through the activation of PI3K and the inhibition of p53, and may be a strategy for improving ESC isolation from human embryos.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Jan J Zylicz ◽  
Maud Borensztein ◽  
Frederick CK Wong ◽  
Yun Huang ◽  
Caroline Lee ◽  
...  

Early mouse development is regulated and accompanied by dynamic changes in chromatin modifications, including G9a-mediated histone H3 lysine 9 dimethylation (H3K9me2). Previously, we provided insights into its role in post-implantation development (Zylicz et al., 2015). Here we explore the impact of depleting the maternally inherited G9a in oocytes on development shortly after fertilisation. We show that G9a accumulates typically at 4 to 8 cell stage to promote timely repression of a subset of 4 cell stage-specific genes. Loss of maternal inheritance of G9a disrupts the gene regulatory network resulting in developmental delay and destabilisation of inner cell mass lineages by the late blastocyst stage. Our results indicate a vital role of this maternally inherited epigenetic regulator in creating conducive conditions for developmental progression and on cell fate choices.


Development ◽  
2014 ◽  
Vol 141 (19) ◽  
pp. 3637-3648 ◽  
Author(s):  
S. Bessonnard ◽  
L. De Mot ◽  
D. Gonze ◽  
M. Barriol ◽  
C. Dennis ◽  
...  

2010 ◽  
Vol 21 (15) ◽  
pp. 2649-2660 ◽  
Author(s):  
David-Emlyn Parfitt ◽  
Magdalena Zernicka-Goetz

Formation of inner and outer cells of the mouse embryo distinguishes pluripotent inner cell mass (ICM) from differentiating trophectoderm (TE). Carm1, which methylates histone H3R17 and R26, directs cells to ICM rather that TE. To understand the mechanism by which this epigenetic modification directs cell fate, we generated embryos with in vivo–labeled cells of different Carm1 levels, using time-lapse imaging to reveal dynamics of their behavior, and related this to cell polarization. This shows that Carm1 affects cell fate by promoting asymmetric divisions, that direct one daughter cell inside, and cell engulfment, where neighboring cells with lower Carm1 levels compete for outside positions. This is associated with changes to the expression pattern and spatial distribution of cell polarity proteins: Cells with higher Carm1 levels show reduced expression and apical localization of Par3 and a dramatic increase in expression of PKCII, antagonist of the apical protein aPKC. Expression and basolateral localization of the mouse Par1 homologue, EMK1, increases concomitantly. Increased Carm1 also reduces Cdx2 expression, a transcription factor key for TE differentiation. These results demonstrate how the extent of a specific epigenetic modification could affect expression of cell polarity and fate-determining genes to ensure lineage allocation in the mouse embryo.


2018 ◽  
Author(s):  
Hajnalka Laura Pálinkás ◽  
Gergely Rácz ◽  
Zoltán Gál ◽  
Orsolya Hoffmann ◽  
Gergely Tihanyi ◽  
...  

AbstractSanitization of nucleotide pools is essential for genome maintenance. Among the enzymes significant in this mechanism, deoxyuridine 5′-triphosphate nucleotidohydrolase (dUTPase) performs cleavage of dUTP into dUMP and inorganic pyrophosphate. By this reaction the enzyme efficiently prevents uracil incorporation into DNA and provides dUMP, the substrate for de novo thymidylate biosynthesis. Despite its physiological significance, knock-out models of dUTPase have not yet been investigated in mammals, only in unicellular organisms, such as bacteria and yeast. Here we generate CRISPR/Cas9-mediated dUTPase knock-out in mice. We find that heterozygous dut +/-animals are viable while the decreased dUTPase level is clearly observable. We also show that the enzyme is essential for embryonic development. Based on the present results, early dut -/-embryos can still reach the blastocyst stage, however, they die shortly after implantation. Analysis of preimplantion embryos indicate perturbed growth of both inner cell mass (ICM) and trophectoderm (TE). We conclude that dUTPase is indispensable for post-implantation development in mice. The gene targeting model generated in the present study will allow further detailed studies in combination with additional gene knock-outs.


Sign in / Sign up

Export Citation Format

Share Document