Trailing Edge Flap Activated by a Piezo-Induced Bending-Torsion Coupled Beam

1999 ◽  
Vol 44 (1) ◽  
pp. 3-15 ◽  
Author(s):  
Andreas P. F. Bernhard ◽  
Inderjit Chopra
2001 ◽  
Vol 105 (1049) ◽  
pp. 391-399 ◽  
Author(s):  
W. Chan ◽  
A. Brocklehurst

Abstract An analytical evaluation of the performance enhancement due to a servo-actuated trailing edge flap was carried out using the coupled rotor-fuselage model (CRFM). The performance enhancement from a trailing edge flap is achieved by introducing effective camber around the azimuth for a nominal aerofoil. An investigation on the best combination of flap parameters, namely the span, position, chord and deflection was carried out in order to identify an optimal configuration within given design constraints. The effects on vibratory control loads over a range of speed for a flap of 10% span, 20% chord, actuated at once per rev has expanded the retreating blade envelope for a Lynx aircraft by some 20kt. The flap hinge load was also examined and it was found not to be excessive. It was also confirmed that an actuated trailing edge flap does not have adverse effect on the pilot's control inputs to trim to a particular flight condition. This paper will discuss the aerodynamic enhancements derived from the application of the trailing edge flap and present conclusions drawn from this study.


2018 ◽  
Vol 55 (1) ◽  
pp. 382-389 ◽  
Author(s):  
Y. Tian ◽  
Z. Li ◽  
P. Q. Liu

2018 ◽  
Vol 141 (6) ◽  
Author(s):  
V. Tremblay-Dionne ◽  
T. Lee

The effect of trailing-edge flap (TEF) deflection on the aerodynamic properties and flowfield of a symmetric airfoil over a wavy ground was investigated experimentally. This Technical Brief is a continuation of Lee and Tremblay-Dionne (2018, “Experimental Investigation of the Aerodynamics and Flowfield of a NACA 0015 Airfoil Over a Wavy Ground,” ASME J. Fluids Eng., 140(7), p. 071202) in which an unflapped airfoil was employed. Regardless of the flap deflection, the cyclic variation in the sectional lift Cl and pitching moment Cm coefficients over the wavy ground always persists. The Cm also has an opposite trend to Cl. The flap deflection, however, produces an increased maximum and minimum Cl and Cm with a reduced fluctuation compared to their unflapped counterparts. The Cd increase outperforms the Cl increase, leading to a lowered Cl/Cd of the flapped airfoil.


2018 ◽  
Vol 10 (6) ◽  
pp. 063304 ◽  
Author(s):  
Wenguang Zhang ◽  
Yifeng Wang ◽  
Ruijie Liu ◽  
Haipeng Liu ◽  
Xu Zhang

2016 ◽  
Author(s):  
Eva Jost ◽  
Annette Fischer ◽  
Galih Bangga ◽  
Thorsten Lutz ◽  
Ewald Krämer

Abstract. The present study investigates the impact of unsteady and viscous 3D aerodynamic effects on a wind turbine blade with trailing edge flap by means of Computational Fluid Dynamics (CFD). Harmonic oscillations are simulated on the DTU 10 MW rotor with a morphing flap of 10 % chord extent ranging from 70 % to 80 % blade radius. The deflection frequency is varied in the range between 1 p and 6 p. To quantify 3D effects, rotor simulations are compared to 2D airfoil computations and the 2D theory by Theodorsen. A significant influence of trailing and shed vortex structures has been found which leads to an amplitude reduction and hysteresis of the lift response in the flap section with regard to the deflection signal. For the 3D rotor results greater amplitude reductions and a less pronounced hysteresis is observed compared to the 2D airfoil case. Blade sections neighboring the flap experience however an opposing impact and hence partly compensate the negative effect of trailing vortices in the flap section in respect to integral loads. The comparison to steady flap deflections at the 3D rotor revealed the high influence of dynamic inflow effects.


Sign in / Sign up

Export Citation Format

Share Document