Digital Agriculture Forum – Highlights

2021 ◽  
Keyword(s):  
Author(s):  
Y.A. Gulyanov ◽  

The article discusses the scientific approaches to the development of promising ways of greening steppe agricultural technologies aimed at the leveling of a trench heterogeneity with the use of intelligent digital technology. In order to minimize negative environmental consequences, the necessity of carrying out a complex of rehabilitation agrotechnical measures that have a soil-restoring and environmentimproving effect is justified.


2010 ◽  
Vol 108-111 ◽  
pp. 1158-1163 ◽  
Author(s):  
Peng Cheng Nie ◽  
Di Wu ◽  
Weiong Zhang ◽  
Yan Yang ◽  
Yong He

In order to improve the information management of the modern digital agriculture, combined several modern digital agriculture technologies, namely wireless sensor network (WSN), global positioning system (GPS), geographic information system (GIS) and general packet radio service (GPRS), and applied them to the information collection and intelligent control process of the modern digital agriculture. Combining the advantage of the local multi-channel information collection and the low-power wireless transmission of WSN, the stable and low cost long-distance communication and data transmission ability of GPRS, the high-precision positioning technology of the DGPS positioning and the large-scale field information layer-management technology of GIS, such a hybrid technology combination is applied to the large-scale field information and intelligent management. In this study, wireless sensor network routing nodes are disposed in the sub-area of field. These nodes have GPS receiver modules and the electric control mechanism, and are relative positioned by GPS. They can real-time monitor the field information and control the equipment for the field application. When the GPS position information and other collected field information are measured, the information can be remotely transmitted to PC by GPRS. Then PC can upload the information to the GIS management software. All the field information can be classified into different layers in GIS and shown on the GIS map based on their GPS position. Moreover, we have developed remote control software based on GIS. It can send the control commands through GPRS to the nodes which have control modules; and then we can real-time manage and control the field application. In conclusion, the unattended automatic wireless intelligent technology for the field information collection and control can effectively utilize hardware resources, improve the field information intelligent management and reduce the information and intelligent cost.


Author(s):  
Terry W. Griffin ◽  
Keith D. Harris ◽  
Jason K. Ward ◽  
Paul Goeringer ◽  
Jessica A. Richard

2021 ◽  
Vol 13 (12) ◽  
pp. 6879
Author(s):  
Hassan P. Ebrahimi ◽  
R. Sandra Schillo ◽  
Kelly Bronson

This study provides a model that supports systematic stakeholder inclusion in agricultural technology. Building on the Responsible Research and Innovation (RRI) literature and attempting to add precision to the conversation around inclusion in technology design and governance, this study develops a framework for determining which stakeholder groups to engage in RRI processes. We developed the model using a specific industry case study: identifying the relevant stakeholders in the Canadian digital agriculture ecosystem. The study uses literature and news article analysis to map stakeholders in the Canadian digital agricultural sector as a test case for the model. The study proposes a systematic framework which categorises stakeholders into individuals, industrial and societal groups with both direct engagement and supportive roles in digital agriculture. These groups are then plotted against three levels of impact or power in the agri-food system: micro, meso and macro.


Sign in / Sign up

Export Citation Format

Share Document