scholarly journals CONVERSION OF LINOLEIC ACID TO DIFFERENT FATTY ACID METABOLITES BY Lactobacillus Plantarum 13-3 AND IN SILICO CHARACTERIZATION OF THE PROMINENT REACTIONS

2020 ◽  
Vol 65 (3) ◽  
pp. 4879-4884
Author(s):  
Tariq Aziz ◽  
Abid Sarwar ◽  
Muhammad Fahim ◽  
Sam Al-Dalali ◽  
Zia Ud Din ◽  
...  
Author(s):  
Tariq Aziz ◽  
Abid Sarwar ◽  
Muhammad Fahim ◽  
Sam Al Dalali ◽  
Zia Ud Din ◽  
...  

Lactobacillus plantarum YW11 capability to convert linoleic acid into conjugated linoleic acid and other metabolites was studied in a dose-dependent manner by supplementing LA at different concentrations. L. plantarum YW11 displayed a uniform distinctive growth curve of CLA and other metabolites at concentrations of LA ranging from 1% (w/v) to 10% (w/v), with slightly increased growth at higher LA concentrations. The biotransformation capability of L. plantarum YW11 evaluated by GC-MS revealed a total of one CLA isomer, i.e. 9-cis,11-trans-octadecadienoic acid, also known as the rumenic acid (RA), one linoleic acid isomer (linoelaidic acid), and LA metabolites: (E)-9-octadecenoic acid ethyl ester, trans, trans-9,12-octadecadienoic acid, propyl ester and stearic acid. All the metabolites of linoleic acid were produced from 1 to 10% LA supplemented MRS media, while surprisingly the only conjugated linoleic acid compound was produced at 10% LA. To assess the presence of putative enzymes, responsible for conversion of LA into CLA, in silico characterization was carried out. The in silico characterization revealed presence of four enzymes (10-linoleic acid hydratase, linoleate isomerase, acetoacetate decarboxylase and dehydrogenase) that may be involved in the production of CLA (rumenic acid) and LA isomers. The biotransformation ability of L. plantarum YW11 to convert LA into RA has great prospects for biotechnological and industrial implications that could be exploited in the future scale-up experiments.


Author(s):  
Tariq Aziz ◽  
Abid Sarwar ◽  
Muhammad Fahim ◽  
Jalal Ud Din ◽  
Sam Al Dalali ◽  
...  

The objective of this study was to assess and scrutinize the competency of probiotic L. plantarum K25 to produce linoleic acid analogues in the medium supplemented with different concentrations of linoleic acid, ranging from 1% to 10%, in a dose dependent manner. The analogues produced were identified and quantitated by GC-MS and in silico studies were done to confirm enzymatic reactions involved in its conversion. The results showed that L. plantarum K25 could convert linoleic acid at different concentrations to 9 different fatty acid analogues at concentrations ranging from 0.01 to 17.24 mg/L. Among these metabolites, formation of an essential fatty acid, the linolenic acid, in media supplemented with 9% linoleic acid, is being reported for the first time. Putative candidate enzymes involved in biotransformation of linoleic acid into linoleic acid analogues were identified in the whole genome of L. plantarum K25, which was sequenced previously. In silico studies confirmed that many enzymes, including linoleate isomerase and dehydrogenase, may be involved in biotransformation of linoleic acid into linoleic acid analogues. Both enzymes could effectively bind the linoleic acid molecule, mainly by forming hydrogen bonding between the acidic groups of linoleic acid and the proline residues at the active sites of the enzymes, validating putative reaction partners.


Author(s):  
Markus Boel ◽  
Oscar J. Abilez ◽  
Ahmed N Assar ◽  
Christopher K. Zarins ◽  
Ellen Kuhl

2019 ◽  
Vol 13 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Vishal Ahuja ◽  
Aashima Sharma ◽  
Ranju Kumari Rathour ◽  
Vaishali Sharma ◽  
Nidhi Rana ◽  
...  

Background: Lignocellulosic residues generated by various anthropogenic activities can be a potential raw material for many commercial products such as biofuels, organic acids and nutraceuticals including xylitol. Xylitol is a low-calorie nutritive sweetener for diabetic patients. Microbial production of xylitol can be helpful in overcoming the drawbacks of traditional chemical production process and lowring cost of production. Objective: Designing efficient production process needs the characterization of required enzyme/s. Hence current work was focused on in-vitro and in-silico characterization of xylose reductase from Emericella nidulans. Methods: Xylose reductase from one of the hyper-producer isolates, Emericella nidulans Xlt-11 was used for in-vitro characterization. For in-silico characterization, XR sequence (Accession No: Q5BGA7) was used. Results: Xylose reductase from various microorganisms has been studied but the quest for better enzymes, their stability at higher temperature and pH still continues. Xylose reductase from Emericella nidulans Xlt-11 was found NADH dependent and utilizes xylose as its sole substrate for xylitol production. In comparison to whole cells, enzyme exhibited higher enzyme activity at lower cofactor concentration and could tolerate higher substrate concentration. Thermal deactivation profile showed that whole cell catalysts were more stable than enzyme at higher temperature. In-silico analysis of XR sequence from Emericella nidulans (Accession No: Q5BGA7) suggested that the structure was dominated by random coiling. Enzyme sequences have conserved active site with net negative charge and PI value in acidic pH range. Conclusion: Current investigation supported the enzyme’s specific application i.e. bioconversion of xylose to xylitol due to its higher selectivity. In-silico analysis may provide significant structural and physiological information for modifications and improved stability.


ChemMedChem ◽  
2021 ◽  
Author(s):  
Ulises Martínez-Ortega ◽  
Diego I. Figueroa-Figueroa ◽  
Francisco Hernández-Luis ◽  
Rodrigo Aguayo-Ortiz

Author(s):  
Neha Periwal ◽  
Shravan B. Rathod ◽  
Ranjan Pal ◽  
Priya Sharma ◽  
Lata Nebhnani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document