scholarly journals Dose-dependent production of linoleic acid analogues in food derived Lactobacillus plantarum K25 and in silico characterization of relevant reactions

Author(s):  
Tariq Aziz ◽  
Abid Sarwar ◽  
Muhammad Fahim ◽  
Jalal Ud Din ◽  
Sam Al Dalali ◽  
...  

The objective of this study was to assess and scrutinize the competency of probiotic L. plantarum K25 to produce linoleic acid analogues in the medium supplemented with different concentrations of linoleic acid, ranging from 1% to 10%, in a dose dependent manner. The analogues produced were identified and quantitated by GC-MS and in silico studies were done to confirm enzymatic reactions involved in its conversion. The results showed that L. plantarum K25 could convert linoleic acid at different concentrations to 9 different fatty acid analogues at concentrations ranging from 0.01 to 17.24 mg/L. Among these metabolites, formation of an essential fatty acid, the linolenic acid, in media supplemented with 9% linoleic acid, is being reported for the first time. Putative candidate enzymes involved in biotransformation of linoleic acid into linoleic acid analogues were identified in the whole genome of L. plantarum K25, which was sequenced previously. In silico studies confirmed that many enzymes, including linoleate isomerase and dehydrogenase, may be involved in biotransformation of linoleic acid into linoleic acid analogues. Both enzymes could effectively bind the linoleic acid molecule, mainly by forming hydrogen bonding between the acidic groups of linoleic acid and the proline residues at the active sites of the enzymes, validating putative reaction partners.

Author(s):  
Tariq Aziz ◽  
Abid Sarwar ◽  
Muhammad Fahim ◽  
Sam Al Dalali ◽  
Zia Ud Din ◽  
...  

Lactobacillus plantarum YW11 capability to convert linoleic acid into conjugated linoleic acid and other metabolites was studied in a dose-dependent manner by supplementing LA at different concentrations. L. plantarum YW11 displayed a uniform distinctive growth curve of CLA and other metabolites at concentrations of LA ranging from 1% (w/v) to 10% (w/v), with slightly increased growth at higher LA concentrations. The biotransformation capability of L. plantarum YW11 evaluated by GC-MS revealed a total of one CLA isomer, i.e. 9-cis,11-trans-octadecadienoic acid, also known as the rumenic acid (RA), one linoleic acid isomer (linoelaidic acid), and LA metabolites: (E)-9-octadecenoic acid ethyl ester, trans, trans-9,12-octadecadienoic acid, propyl ester and stearic acid. All the metabolites of linoleic acid were produced from 1 to 10% LA supplemented MRS media, while surprisingly the only conjugated linoleic acid compound was produced at 10% LA. To assess the presence of putative enzymes, responsible for conversion of LA into CLA, in silico characterization was carried out. The in silico characterization revealed presence of four enzymes (10-linoleic acid hydratase, linoleate isomerase, acetoacetate decarboxylase and dehydrogenase) that may be involved in the production of CLA (rumenic acid) and LA isomers. The biotransformation ability of L. plantarum YW11 to convert LA into RA has great prospects for biotechnological and industrial implications that could be exploited in the future scale-up experiments.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3215-3215 ◽  
Author(s):  
Feda Azab ◽  
Shireen Vali ◽  
Nicholas Potter ◽  
Joseph Abraham ◽  
Barbara Muz ◽  
...  

Abstract Introduction Multiple myeloma (MM) is the second most prevalent hematologic malignancy and is still incurable. The PI3K pathway is activated and correlated with drug resistance in MM. Pan-inhibition of the PI3K pathway resulted in serious side effects, therefore, we focused on specific inhibition of the PI3K-alpha isoform. We investigated the role of PI3K- alpha in the progression and drug resistance of MM, by inhibiting the PI3K- alpha with a novel specific inhibitor BYL719. This is the first study to describe the preclinical effect of BYL719 on MM in particular and in hematologic malignancies in general. Methods and Results We analyzed the gene expression of PI3K isoforms in MM patients based on published datasets from the Gene Expression Omnibus by Zhan et al and found that PI3K-alpha and beta isoforms were highly expressed in MM. However, the fold-change of expression of the alpha isoform in MM patients was higher than the beta isoform, compared to healthy subjects. BYL719 inhibited the survival of MM cells isolated from three MM patients by MTT, at an IC50 around 1uM, but had no effect on normal PBMCs. Furthermore, BYL719 inhibited survival of all MM cell lines in a different manner. In silico-predicted activity of PI3K-alpha in the cell lines was exponentially correlated with the killing induced by the PI3K inhibitor BYL719 in vitro. BYL719 significantly decreased the activation of the PI3K signaling related proteins (pAKT, pS6R, and pGSK) by western blotting. Moreover, BYL719 inhibited cell cycle of MM cells detected by PI staining showed induction of G1-phase cell cycle arrest. BYL719 inhibited MM proliferation of MM1s cells in a dose dependent manner, through decreasing the levels of pCyclin-E1 and pRb, and increasing of P27 levels. The results were in agreement with the in silico studies that predicted the inhibition of other cell-cycle proteins including CDK4-Cyclin D complex, Myc-Max complex and CDK1-Cyclin B complex by BYL719 in a dose dependent manner. Moreover, BYL719 (0-2.5uM) increased the fraction of apoptotic MM cells in a dose depended manner, as detected by Annexin/PI staining. BYL719 induced apoptosis signaling by inducing the cleavage of Caspase-3, Caspase-9 and PARP by western blotting, in a dose dependent manner. We tested the effect of the combination of BYL719 with other drugs (Bortezomib and Carfilzomib) on survival of MM cells by MTT. We found that the combination of the two drugs decreased the surviving fraction of MM cells more than each of the drugs alone. Mechanistically, Bortezomib increased pAKT and pS6R as a resistance mechanism, and BYL719 abolished the Bortezomib-induced increase of pAKT and pS6R. Moreover, BYL719 enhanced the activation of pJNK induced by Carfilzomib and the combination of each drug increased cleavage of PARP, caspase-3 and caspase-9 more than each of the drugs alone. We tested the effect of BYL719 on the interaction of MM cells with BM stromal cells (BMSCs), and it was found that BYL719 decreased the adhesion of MM cells to BMSCs in a dose-dependent manner. Mechanistically, BYL719 decreased the activation of adhesion signaling such as pFAK, pSRC and pCofilin in a dose dependent manner. The in silico studies predicted the inhibition of the small GTPases Rho, Rac and Cdc42. To test the effect of BYL719 on drug resistance induced by the BM stroma, MM cells were co-Cultured with BMSCs, treated with BYL719 in combination with Bortezomib or Carfilzomib. It was found that co-culture with BMSCs increased the surviving fraction of MM cells after treatment with Bortezomib and Carfilzomib, as a drug resistance mechanism. The combination of the two drugs with BYL719 overcame the resistance induced by the stroma and reduced the surviving fraction to the values observed for treatment without presence of stroma. Conclusion This is the first study to describe preclinical effect of BYL719 on MM in particular and hematologic malignancies in general. The PI3K-alpha isoform plays a major role in the progression and drug resistance in MM cells, and it's inhibition with BYL719 reduces proliferation, inhibits cell cycle and induces apoptosis in MM cells. Moreover, it showed that BYL719 synergizes with Bortezomib and Carfilzomib, and overcomes drug resistance induced by BM stroma. Our findings provide a preclinical basis of future clinical trial of BYL719 in MM as a single agent or in combination with other drugs. Disclosures: Vali: Cellworks Group Inc., San Jose, CA, USA: Employment. Abbasi:Cellworks Group Inc: Employment.


1987 ◽  
Vol 40 (4) ◽  
pp. 405
Author(s):  
David Mann ◽  
Audrey M Bersten

The incorporation of long-chain fatty acids into phospholipids has been detected in adipocyte ghosts that were incubated with [1_14 C] stearic, [1_14 C] linoleic or [l_14C] arachidonic acid. Adrenaline and adenosine activated this incorporation within 15 s of exposure of the ghosts to the hormones and the response was dose dependent. Maximum incorporation of labelled linoleic acid occurred at 10-5 M adrenaline and 10-7 M adenosine. The a-agonist phenylephrine and the ~-agonist isoproterenol were also shown to stimulate the incorporation of fatty acid in a dose dependent manner. Phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol were each labelled preferentially with linoleic or arachidonic acid. p-Bromophenacylbromide, quinacrine and centrophenoxine inhibited the adrenaline-stimulated incorporation of fatty acids into ghost membrane phospholipids, and p-bromophenacylbromide also reduced the activation of adenylate cyclase by adrenaline. NaF, an activator of adenylate cyclase, like adrenaline, stimulated the incorporation of linoleic acid into ghost membrane phospholipids.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Monte S Willis ◽  
Jon Schisler ◽  
Holly McDonough ◽  
Cam Patterson

Previous work has suggested that MuRF1, a cardiac-specific protein, regulates metabolism by its interactions with proteins that regulate ATP transport, glycolysis, and the electron transport chain. We recently identified that MuRF1 is cardioprotective in ischemia reperfusion injury. In the current study, we investigated the effects of MuRF1 expression on metabolic substrate utilization and found that MuRF1 shifts substrate utilization from fatty acids to glucose in a dose-dependent manner. Isolated neonatal ventricular cardiomyocytes were treated with an adenovirus expressing MuRF1 (Ad.MuRF1) or GFP (Ad.GFP) at a range of 0–25 MOI (Multiplicity Of Infection). 14C-Oleate or 14C-glucose were added to cells for 1 hour and 14C-CO2 release was determined using the CO2-trapping method. Trapped 14CO2 and acid soluble metabolites were used to calculate total fatty acid oxidation. Cardiomyocytes treated with 5–25 MOI Ad.MuRF1 demonstrated a dose dependent decrease in fatty acid oxidation of 10.5 +/− 2.3(5 MOI), 8.5 +/− 1.9 (10 MOI), 6.6 +/− 1.6 (15 MOI), and 5.1 +/− 1.3 (25 MOI) nmol oleate/mg protein/h. Compared with control cardiomyocytes treated with 5–25 MOI Ad.GFP (average of 5–25 MOI=13.5 +/− 0.7 nmol oleate/mg protein/h), this represents a 22.2%– 62.2% decrease in fatty acid oxidation. Inversely, glucose oxidation increased with increasing MuRF1 expression. Cardiomyocytes infected with 25 MOI Ad.MuRF1 oxidized 184% more glucose (28.9 +/− 4.6 nmol glucose/mg protein/h) compared to control cells treated with 25 MOI Ad.GFP (15.7 +/− 1.3 nmol glucose/mg protein/h). Increasing MuRF1 expression resulted in no net gain or loss of calculated ATP production (1699 +/− 157 vs. 1480 +/− 188 nmol ATP/mg protein/h). The co-utilization of glucose and fatty acids as substrates for the production of ATP allows the heart to adapt to both environmental stress and disease. Increasing the relative proportion of glucose oxidation in relationship to fatty acids is a known protective mechanism during cardiac stress, and may represent one mechanism by which MuRF1 is cardioprotective.


1985 ◽  
Vol 40 (9-10) ◽  
pp. 670-676 ◽  
Author(s):  
Gerd Gäde

Abstract Although crude extracts of cockroach (Periplaneta amencana) corpora cardiaca have been shown previously to affect the activity of adenylate cyclase and phosphorylase, we demonstrate in the present study for the first time that low concentrations (0.5 to 5 pmol) of the synthetic myoactive peptides. M I and M II, also affect these systems; these myoactive peptides are identical to the hypertrehalosaemic hormones I and II, and cause an increase in the concentration of the second messenger cyclic AMP in the fat body.In addition, both octapeptides activate fat body glycogen phosphorylase and promote breakdown of fat body glycogen. Both peptides increase the levels to haemolymph carbohydrate in a dose-dependent manner.


2020 ◽  
Vol 8 (10) ◽  
pp. 1610 ◽  
Author(s):  
Mitsuru Sada ◽  
Takeshi Saraya ◽  
Haruyuki Ishii ◽  
Kaori Okayama ◽  
Yuriko Hayashi ◽  
...  

Favipiravir was initially developed as an antiviral drug against influenza and is currently used in clinical trials against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection (COVID-19). This agent is presumably involved in RNA chain termination during influenza virus replication, although the molecular interactions underlying its potential impact on the coronaviruses including SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) remain unclear. We performed in silico studies to elucidate detailed molecular interactions between favipiravir and the SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza virus RNA-dependent RNA polymerases (RdRp). As a result, no interactions between favipiravir ribofuranosyl-5′-triphosphate (F-RTP), the active form of favipiravir, and the active sites of RdRps (PB1 proteins) from influenza A (H1N1)pdm09 virus were found, yet the agent bound to the tunnel of the replication genome of PB1 protein leading to the inhibition of replicated RNA passage. In contrast, F-RTP bound to the active sites of coronavirus RdRp in the presence of the agent and RdRp. Further, the agent bound to the replicated RNA terminus in the presence of agent, magnesium ions, nucleotide triphosphate, and RdRp proteins. These results suggest that favipiravir exhibits distinct mechanisms of action against influenza virus and various coronaviruses.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Andrew Mtewa ◽  
Duncan C. Sesaazi ◽  
Fanuel Lampiao

Eichhornia crassipes has been reported to have various medicinal properties including anticancer activities. The plant was collected from the Shire river in Malawi, and two cytotoxic compounds, benzene-1,4-diol and nonanedioic acid, were isolated and characterized for the first time in the leaves and roots of the plant. 1H NMR, COSY, HSQC, HMBC, 13-C, and LCMS spectroscopic experimental techniques were used to identify the compounds in their pure forms. In silico experiments showed that both compounds do not have AMES toxicity and do not inhibit cytochrome P450 enzymes, but nonanedioic acid acts as a CYP2D6 substrate. This work showed that Eichhornia crassipes can be considered to have a role as a source of potential hits and leads to drug development that can be rationally optimized for drugs.


Toxins ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 494 ◽  
Author(s):  
Jan Lubawy ◽  
Arkadiusz Urbański ◽  
Lucyna Mrówczyńska ◽  
Eliza Matuszewska ◽  
Agata Światły-Błaszkiewicz ◽  
...  

Melittin (MEL) is a basic polypeptide originally purified from honeybee venom. MEL exhibits a broad spectrum of biological activity. However, almost all studies on MEL activity have been carried out on vertebrate models or cell lines. Recently, due to cheap breeding and the possibility of extrapolating the results of the research to vertebrates, insects have been used for various bioassays and comparative physiological studies. For these reasons, it is valuable to examine the influence of melittin on insect physiology. Here, for the first time, we report the immunotropic and cardiotropic effects of melittin on the beetle Tenebrio molitor as a model insect. After melittin injection at 10−7 M and 10−3 M, the number of apoptotic cells in the haemolymph increased in a dose-dependent manner. The pro-apoptotic action of MEL was likely compensated by increasing the total number of haemocytes. However, the injection of MEL did not cause any changes in the percent of phagocytic haemocytes or in the phenoloxidase activity. In an in vitro bioassay with a semi-isolated Tenebrio heart, MEL induced a slight chronotropic-positive effect only at a higher concentration (10−4 M). Preliminary results indicated that melittin exerts pleiotropic effects on the functioning of the immune system and the endogenous contractile activity of the heart. Some of the induced responses in T. molitor resemble the reactions observed in vertebrate models. Therefore, the T. molitor beetle may be a convenient invertebrate model organism for comparative physiological studies and for the identification of new properties and mechanisms of action of melittin and related compounds.


2004 ◽  
Vol 287 (4) ◽  
pp. E781-E789 ◽  
Author(s):  
Adrian Chabowski ◽  
Susan L. M. Coort ◽  
Jorge Calles-Escandon ◽  
Narendra N. Tandon ◽  
Jan F. C. Glatz ◽  
...  

Because insulin has been shown to stimulate long-chain fatty acid (LCFA) esterification in skeletal muscle and cardiac myocytes, we investigated whether insulin increased the rate of LCFA transport by altering the expression and the subcellular distribution of the fatty acid transporters FAT/CD36 and FABPpm. In cardiac myocytes, insulin very rapidly increased the expression of FAT/CD36 protein in a time- and dose-dependent manner. During a 2-h period, insulin (10 nM) increased cardiac myocyte FAT/CD36 protein by 25% after 60 min and attained a maximum after 90–120 min (+40–50%). There was a dose-dependent relationship between insulin (10−12 to 10−7 M) and FAT/CD36 expression. The half-maximal increase in FAT/CD36 protein occurred at 0.5 × 10−9 M insulin, and the maximal increase occurred at 10−9 to 10−8 M insulin (+40–50%). There were similar insulin-induced increments in FAT/CD36 protein in cardiac myocytes (+43%) and in Langendorff-perfused hearts (+32%). In contrast to FAT/CD36, insulin did not alter the expression of FABPpm protein in either cardiac myocytes or the perfused heart. By use of specific inhibitors of insulin-signaling pathways, it was shown that insulin-induced expression of FAT/CD36 occurred via the PI 3-kinase/Akt insulin-signaling pathway. Subcellular fractionation of cardiac myocytes revealed that insulin not only increased the expression of FAT/CD36, but this hormone also targeted some of the FAT/CD36 to the plasma membrane while concomitantly lowering the intracellular depot of FAT/CD36. At the functional level, the insulin-induced increase in FAT/CD36 protein resulted in an increased rate of palmitate transport into giant vesicles (+34%), which paralleled the increase in plasmalemmal FAT/CD36 (+29%). The present studies have shown that insulin regulates protein expression of FAT/CD36, but not FABPpm, via the PI 3-kinase/Akt insulin-signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document