scholarly journals Seasonal dynamics of dissolved organic carbon, nitrogen and other nutrients in soil of Pinus massoniana stands after pine wilt disease disturbance

Author(s):  
P Ge ◽  
L.J Da ◽  
W.B Wang ◽  
X.N Xu
Nematology ◽  
2021 ◽  
pp. 1-17
Author(s):  
Wei Lu ◽  
Xiao-Jia Zhao ◽  
Jia-Jin Tan

Summary Pine wilt disease (PWD) is a devastating pine disease caused by Bursaphelenchus xylophilus and its main host in China is Pinus massoniana. The relationship between endophytic bacteria and disease resistance in P. massoniana remains unclear. In this paper, the leaves, roots, stems and treetops of different disease-resistant P. massoniana were studied as the research objective and Illumina MiSeq sequencing was used to analyse whether there were significant differences in the composition and diversity of endophytic bacterial communities between different disease-resistant P. massoniana. The results showed that at the genus level there were no obvious differences in the composition of the endophytic bacterial community of different disease-resistant P. massoniana in the leaves, but there were obvious differences in the roots, stems and treetops. The richness and diversity of endophytic bacteria in P. massoniana had no significant impact on its disease resistance, whilst the structure of endophytic bacterial community in stems and treetops may be related to its disease resistance.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0251937
Author(s):  
Ting Pan ◽  
Xue-lian Chen ◽  
Yan-ping Hao ◽  
Chun-wu Jiang ◽  
Song Wang ◽  
...  

Pine wilt disease (PWD) is a devastating disease affecting trees belonging to the genus Pinus. To control the spread of PWD in the Masson pine forest in China, PWD resistant Masson pine clones have been selected by the Anhui Academy of Forestry. However, because Masson pine is a difficult-to-root species, producing seedlings is challenging, especially from trees older than 5 years of age, which impedes the application of PWD resistant clones. In this study, we investigated the factors affecting rooting of PWD resistant clones and established a cheap, reliable, and simple method that promotes rooting. We tested the effects of three management methods, four substrates, two cutting materials, two cutting treatments, and three collection times on the rooting of cuttings obtained from 9-year-old PWD resistant clones. Rooting was observed only in stem cuttings treated with the full-light automatic spray management method. Additionally, stem cuttings showed a significantly higher rooting rate and root quality than needles cuttings. Compared with other substrates, stem cuttings planted in perlite produced the longest adventitious root and the highest total root length and lateral root number. Moreover, stem cuttings of PWD resistant clones collected in May showed a significantly higher rooting rate and root quality than those collected in June and July. Moreover, stem cuttings prepared with a horizontal cut while retaining the needles showed significantly higher rooting rate and root quality than those prepared with a diagonal cut while partly removing the needles. This study promotes the reproduction of seedlings of PWD-resistant Masson pine clones which helps control the spread of PWD, meanwhile, provides a technical reference for the propagation of mature pine trees via cuttings.


2019 ◽  
Author(s):  
Yajie Guo ◽  
Qiannan Lin ◽  
lvyi Chen ◽  
Carballar-Lejarazú Rebeca ◽  
Ensi Shao ◽  
...  

Abstract Background Pine wilt disease (PWD) is a destructive disease caused by the pinewood nematode Bursaphelenchus xylophilus . Monochamus alternatus Hope is the main vector of this disease. The symbiotic microorganisms can play an important role in the transmission cycle mechanism. However, the role of bacterial microorganisms in the transmission of pine wood nematode by M. alternatus is not clear currently. The main purpose of this study is to reveal the composition and diversity of microbial flora in the gut of M. alternatus , as well as healthy and infected Pinus massoniana and its peripheral environment to discover the important microbial flora contributing to the transmission cycle.Methods In this study, total DNA was extracted from 60 samples, including 20 samples of M. alternatus gut from different larval instars, healthy P. massoniana , nematode-infected P. massoniana and their peripheral environment (needles, bark, phloem, xylem, root, surface soil and rhizosphere soil), by triplicate. Samples were used for 16S rDNA Amplicon sequencing to determine the composition and diversity of microbial flora in each sample.Results Infection of pinewood nematode resulted in an increase of the microbial community in the nematode-infected P. massoniana and its peripheral environment when compared with healthy P. massoniana , the microbial community in different tissues changed. Among them, Gryllotalpicola and Cellulomonas showed to be endemic microorganisms in nematode-infected P. massoniana , which can be used as indicators to detect the disease. Serratia was shown as an opportunistic pathogen, and was found to be enriched in M. alternatus gut and was also detected in the host plant tissues.Conclusions This study clarified the change of microbial community in the transmission of pine wilt disease by M. alternatus . An important theoretical basis for the prevention of pine wilt disease was structured by our research.


1988 ◽  
Vol 54 (5) ◽  
pp. 606-615 ◽  
Author(s):  
Keiko KURODA ◽  
Toshihiro YAMADA ◽  
Kazuhiko MINEO ◽  
Hirotada TAMURA

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Run Yu ◽  
Lili Ren ◽  
Youqing Luo

Abstract Background Pine wilt disease (PWD) is a major ecological concern in China that has caused severe damage to millions of Chinese pines (Pinus tabulaeformis). To control the spread of PWD, it is necessary to develop an effective approach to detect its presence in the early stage of infection. One potential solution is the use of Unmanned Airborne Vehicle (UAV) based hyperspectral images (HIs). UAV-based HIs have high spatial and spectral resolution and can gather data rapidly, potentially enabling the effective monitoring of large forests. Despite this, few studies examine the feasibility of HI data use in assessing the stage and severity of PWD infection in Chinese pine. Method To fill this gap, we used a Random Forest (RF) algorithm to estimate the stage of PWD infection of trees sampled using UAV-based HI data and ground-based data (data directly collected from trees in the field). We compared relative accuracy of each of these data collection methods. We built our RF model using vegetation indices (VIs), red edge parameters (REPs), moisture indices (MIs), and their combination. Results We report several key results. For ground data, the model that combined all parameters (OA: 80.17%, Kappa: 0.73) performed better than VIs (OA: 75.21%, Kappa: 0.66), REPs (OA: 79.34%, Kappa: 0.67), and MIs (OA: 74.38%, Kappa: 0.65) in predicting the PWD stage of individual pine tree infection. REPs had the highest accuracy (OA: 80.33%, Kappa: 0.58) in distinguishing trees at the early stage of PWD from healthy trees. UAV-based HI data yielded similar results: the model combined VIs, REPs and MIs (OA: 74.38%, Kappa: 0.66) exhibited the highest accuracy in estimating the PWD stage of sampled trees, and REPs performed best in distinguishing healthy trees from trees at early stage of PWD (OA: 71.67%, Kappa: 0.40). Conclusion Overall, our results confirm the validity of using HI data to identify pine trees infected with PWD in its early stage, although its accuracy must be improved before widespread use is practical. We also show UAV-based data PWD classifications are less accurate but comparable to those of ground-based data. We believe that these results can be used to improve preventative measures in the control of PWD.


2021 ◽  
Vol 145 ◽  
pp. 110764
Author(s):  
Takasar Hussain ◽  
Adnan Aslam ◽  
Muhammad Ozair ◽  
Fatima Tasneem ◽  
J.F. Gómez-Aguilar

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 731
Author(s):  
Zhuoqing Hao ◽  
Jixia Huang ◽  
Yantao Zhou ◽  
Guofei Fang

The Yangtze River Basin is among the river basins with the strongest strategic support and developmental power in China. As an invasive species, the pinewood nematode (PWN) Bursaphelenchus xylophilus has introduced a serious obstacle to the high-quality development of the economic and ecological synchronization of the Yangtze River Basin. This study analyses the occurrence and spread of pine wilt disease (PWD) with the aim of effectively managing and controlling the spread of PWD in the Yangtze River Basin. In this study, statistical data of PWD-affected areas in the Yangtze River Basin are used to analyse the occurrence and spread of PWD in the study area using spatiotemporal visualization analysis and spatiotemporal scanning statistics technology. From 2000 to 2018, PWD in the study area showed an “increasing-decreasing-increasing” trend, and PWD increased explosively in 2018. The spatial spread of PWD showed a “jumping propagation-multi-point outbreak-point to surface spread” pattern, moving west along the river. Important clusters were concentrated in the Jiangsu-Zhejiang area from 2000 to 2015, forming a cluster including Jiangsu and Zhejiang. Then, from 2015–2018, important clusters were concentrated in Chongqing. According to the spatiotemporal scanning results, PWD showed high aggregation in the four regions of Zhejiang, Chongqing, Hubei, and Jiangxi from 2000 to 2018. In the future, management systems for the prevention and treatment of PWD, including ecological restoration programs, will require more attention.


2021 ◽  
Author(s):  
Jong‐Kook Jung ◽  
Ung Gyu Lee ◽  
Deokjea Cha ◽  
Dong Soo Kim ◽  
Chansik Jung

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Diogo Neves Proença ◽  
Romeu Francisco ◽  
Susanne Kublik ◽  
Anne Schöler ◽  
Gisle Vestergaard ◽  
...  

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Fengdi Li ◽  
Zhenyu Liu ◽  
Weixing Shen ◽  
Yan Wang ◽  
Yunlu Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document