scholarly journals Land use and soil development in southern Chile: Effects on physical properties

Author(s):  
H Fleige ◽  
S Beck-Broichsitter ◽  
J Dörner ◽  
M.-O Goebel ◽  
J Bachmann ◽  
...  
2021 ◽  
Vol 35 ◽  
pp. 100810
Author(s):  
Mohamed A. Aboelnour ◽  
Bernard A. Engel ◽  
Marty D. Frisbee ◽  
Margaret W. Gitau ◽  
Dennis C. Flanagan
Keyword(s):  
Land Use ◽  

Author(s):  
John J. Drewry ◽  
Sam Carrick ◽  
Nicole L. Mesman ◽  
Peter Almond ◽  
Karin Müller ◽  
...  

2021 ◽  
Vol 930 (1) ◽  
pp. 012054
Author(s):  
I K Hidayati ◽  
Suhardjono ◽  
D Harisuseno ◽  
A Suharyanto

Abstract Ponding time is the period from the beginning of rainfall/infiltration until the occurrence of ponding. This paper aims to determine the infiltration rate and ponding time on different land uses, such as open fields, residential, agriculture, and vegetation. This research was conducted in one of the watersheds in the Brantas River Basin, namely the Lesti River Basin, which is administratively included in the Malang Regency, East Java. The Lesti River is one of the tributaries of the Brantas River, which originates around Mount Semeru, a very intensive area for planting rice, sugar cane, and coffee. Infiltration data were collected at 35 points using a double-ring infiltrometer spread across the Lesti watershed with Andosol, Mediterranean, and Regosol soil types. At the same time, ponding time was obtained from infiltration measurements in the field using the flooding method. The physical properties of the soils were tested in the laboratory to obtain water content, porosity, and bulk density values. This study resulted in the infiltration rate and ponding time for each land use and shows how the physical properties of the soil affect the ponding time.


2015 ◽  
Vol 38 (4) ◽  
pp. 295-301
Author(s):  
Poonam ◽  
Rajan Bawa ◽  
Hari Sankhyan ◽  
D. Nayak ◽  
S.S. Sharma

The present study was conducted in Goshal, one of the largest villages of Lahaul valley of Himachal Pradesh during 2010 to 2013 to study the land use pattern of village Goshal by classifying the study area into three major ecosystems viz; Forest ecosystem, alpine pasture ecosystem and agro-ecosystem and to assess the soil physical properties of these ecosystems. Land use pattern in agro ecosystem revealed that of the total area of village Goshal, maximum area was occupied under second grade irrigated area and maximum area under non cultivable lands was reported under grasslands. Pea occupied maximum per cent area which showed the shifting of the farming community from traditional cropping pattern to cash crops. It was further observed that the villagers opted plantations of poplars and willows. The soil physical properties of all the three ecosystems were found medium in available nutrient status.


2020 ◽  
Vol 43 (8) ◽  
pp. 2015-2033 ◽  
Author(s):  
David R. Plew ◽  
John R. Zeldis ◽  
Bruce D. Dudley ◽  
Amy L. Whitehead ◽  
Leigh M. Stevens ◽  
...  

Abstract We developed a method to predict the susceptibility of New Zealand estuaries to eutrophication. This method predicts macroalgae and phytoplankton responses to potential nutrient concentrations and flushing times, obtained nationally from simple dilution models, a GIS land-use model and physical estuary properties. Macroalgal response was based on an empirically derived relationship between potential nitrogen concentrations and an established macroalgal index (EQR) and phytoplankton response using an analytical growth model. Intertidal area was used to determine which primary producer was likely to lead to eutrophic conditions within estuaries. We calculated the eutrophication susceptibility of 399 New Zealand estuaries and assigned them to susceptibility bands A (lowest expected impact) to D (highest expected impact). Twenty-seven percent of New Zealand estuaries have high or very high eutrophication susceptibilities (band C or D), mostly (63% of band C and D) due to macroalgae. The physical properties of estuaries strongly influence susceptibility to macroalgae or phytoplankton blooms, and estuaries with similar physical properties cluster spatially around New Zealand’s coasts. As a result, regional patterns in susceptibility are apparent due to a combination of estuary types and land use patterns. The few areas in New Zealand with consistently low estuary eutrophication susceptibilities are either undeveloped or have estuaries with short flushing times, low intertidal area and/or minimal tidal influx. Estuaries with conditions favourable for macroalgae are most at risk. Our approach provides estuary-integrated susceptibility scores likely to be of use as a regional or national screening tool to prioritise more in-depth estuary assessments, to evaluate likely responses to altered nutrient loading regimes and assist in developing management strategies for estuaries.


Forests ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 17 ◽  
Author(s):  
Franklin Marín ◽  
Carlos Dahik ◽  
Giovanny Mosquera ◽  
Jan Feyen ◽  
Pedro Cisneros ◽  
...  

Andean ecosystems provide important ecosystem services including streamflow regulation and carbon sequestration, services that are controlled by the water retention properties of the soils. Even though these soils have been historically altered by pine afforestation and grazing, little research has been dedicated to the assessment of such impacts at local or regional scales. To partially fill this knowledge gap, we present an evaluation of the impacts of pine plantations and grazing on the soil hydro-physical properties and soil organic matter (SOM) of high montane forests and páramo in southern Ecuador, at elevations varying between 2705 and 3766 m a.s.l. In total, seven study sites were selected and each one was parceled into undisturbed and altered plots with pine plantation and grazing. Soil properties were characterized at two depths, 0–10 and 10–25 cm, and differences in soil parameters between undisturbed and disturbed plots were analyzed versus factors such as ecosystem type, sampling depth, soil type, elevation, and past/present land management. The main soil properties affected by land use change are the saturated hydraulic conductivity (Ksat), the water retention capacity (pF 0 to 2.52), and SOM. The impacts of pine afforestation are dependent on sampling depth, ecosystem type, plantation characteristics, and previous land use, while the impacts of grazing are primarily dependent on sampling depth and land use management (grazing intensity and tilling activities). The site-specific nature of the found relations suggests that extension of findings in response to changes in land use in montane Andean ecosystems is risky; therefore, future evaluations of the impact of land use change on soil parameters should take into consideration that responses are or can be site specific.


2016 ◽  
Vol 32 (3) ◽  
pp. 400-410 ◽  
Author(s):  
P. Mustamo ◽  
M. Hyvärinen ◽  
A.-K. Ronkanen ◽  
B. Kløve

Sign in / Sign up

Export Citation Format

Share Document