Measurements of Thermal Conductivity of Thin Films by Means of Comparative Method

2004 ◽  
Vol 1 (3) ◽  
pp. 176-186
Author(s):  
Selim Achmatowicz ◽  
Iwona Wyżkiewicz ◽  
Elżbieta Zwierkowska ◽  
Wojciech Łobodziński

The comparative method has been employed to approximate thermal conductivity of thin layers (10 to 100 μm thick). The method is based on measurement of temperature distribution on the surface of horizontally positioned plate heated in the central spot to a constant temperature in a steady state. The paper contains description of the method, a few examples of conducted measurement and evaluation of the accuracy of the method.

2021 ◽  
Vol 92 (4) ◽  
pp. 044907
Author(s):  
Nicholas J. Hines ◽  
Luke Yates ◽  
Brian M. Foley ◽  
Zhe Cheng ◽  
Thomas L. Bougher ◽  
...  

2003 ◽  
Author(s):  
Ming-Tsung Sun ◽  
Chin-Hsiang Chang

The newly developed method for steady-state thermal conductivity measurement with single constant temperature region is experimentally proven accurate within 3% compared with the guarded hot plate method. The method is suitable for in-situ non-destructive evaluation of insulation materials. However, there are factors that affect the accuracy of measurement yet to be closely studied. In this paper, we present a theoretical analysis of the accuracy of the method by varying the relative size of the heating plate, the thickness of the test specimen, the location of the temperature sensors at the lower temperature side, and different thermal convection coefficients for the free convection boundary condition. In the study, the temperature distribution in a homogeneous material is solved numerically. The thermal conductivity is evaluated from the temperature distribution and the heat flux measured according to the method. By comparing the results with that given in the numerical model, the accuracy can be expressed as functions of the three variables in the analysis. The results are consistent with that of the experiment. They are considered beneficial in providing information to the optimal design and the measurement correction of a commercialized apparatus using the method.


2019 ◽  
Vol 677 ◽  
pp. 21-25 ◽  
Author(s):  
Yucheng He ◽  
Xiaoheng Li ◽  
Ling Ge ◽  
Qinyun Qian ◽  
Wenbing Hu

2006 ◽  
Vol 45 (3) ◽  
pp. 313-318 ◽  
Author(s):  
Chelakara S. Subramanian ◽  
Tahani Amer ◽  
Billy T. UpChurch ◽  
David W. Alderfer ◽  
Cecil Burkett ◽  
...  

2007 ◽  
Vol 1020 ◽  
Author(s):  
S. Budak ◽  
S. Guner ◽  
C. Muntele ◽  
C. C. Smith ◽  
B. Zheng ◽  
...  

AbstractSemiconducting â-Zn4Sb3and ZrNiSn-based half-heusler compound thin films were prepared by co-evaporation for the application of thermoelectric (TE) materials. High-purity solid zinc and antimony were evaporated by electron beam to grow the â-Zn4Sb3thin film while high-purity zirconium powder and nickel tin powders were evaporated by electron beam to grow the ZrNiSn-based half-heusler compound thin film. Rutherford backscattering spectrometry (RBS) was used to analyze the composition of the thin films. The grown thin films were subjected to 5 MeV Si ions bombardments for generation of nanostructures in the films. We measured the thermal conductivity, Seebeck coefficient, and electrical conductivity of these two systems before and after 5 MeV Si ions beam bombardments. The two material systems have been identified as promising TE materials for the application of thermal-to-electrical energy conversion, but the efficiency still limits their applications. The electronic energy deposited due to ionization in the track of MeV ion beam can cause localized crystallization. The nanostructures produced by MeV ion beam can cause significant change in both the electrical and the thermal conductivity of thin films, thereby improving the efficiency. We used the 3ù-method measurement system to measure the cross-plane thermal conductivity ,the Van der Pauw measurement system to measure the cross-plane electrical conductivity, and the Seebeck-coefficient measurement system to measure the cross-plane Seebeck coefficient. The thermoelectric figures of merit of the two material systems were then derived by calculations using the measurement results. The MeV ion-beam bombardment was found to decrease the thermal conductivity of thin films and increase the efficiency of thermal-to-electrical energy conversion.


2013 ◽  
Vol 556 ◽  
pp. 1-5 ◽  
Author(s):  
Andrzej Kusiak ◽  
Jiri Martan ◽  
Jean-Luc Battaglia ◽  
Rostislav Daniel

Sign in / Sign up

Export Citation Format

Share Document