Thick Film Pastes for Power Applications

2013 ◽  
Vol 2013 (CICMT) ◽  
pp. 000155-000161
Author(s):  
Christina Modes ◽  
Melanie Bawohl ◽  
Jochen Langer ◽  
Jessica Reitz ◽  
Anja Eisert ◽  
...  

Electronic circuits made by thick film technology are commonly used today in electronic circuitry for automotive applications. Densely packed multi-layer hybrid circuits are very well established for motor and transmission management in standard gasoline fuelled vehicles. As automotive technology shifts from mechanical systems to electrical systems and toward more electrically driven vehicles, such as hybrid electric vehicles and full electric vehicles, thick film systems need to be adapted to fit the challenges and needs of these new applications. The following is a description of a new set of thick film pastes, both precious and base metal, which have attributes and performance suitable for power electronics in automotive applications. The materials provide a means to use common thick film technology to build power circuits to meet the new needs, such as high current carrying capacity and thermal dissipation.

2013 ◽  
Vol 8-9 ◽  
pp. 453-460 ◽  
Author(s):  
Florin Nicolae Jurca ◽  
Radu Petru Hangiu ◽  
Claudia Martis

In automotive applications, the requirements for the electrical machines are about performance and reliability - the permanent magnet synchronous machines ensure these requirements are fulfilled. The approach of the present paper is to analyze the permanent synchronous machines suited for the integrated starter-alternator (ISA) applications. The study design requires some analytical, followed by a numerical analysis and also a finite element method in order to achieve the performances of the machine. The operation modes of an ISA system and the constraints for an electric machine acting as an ISA are detailed. Finally a model for a ISA hybrid vehicle, developed in AMESim is presented and the results of a simulated drive cycle are presented.


Author(s):  
Zhiming Gao ◽  
Zhenhong Lin ◽  
Oscar Franzese

An evaluation was made of the application of battery electric vehicles (BEVs) and GenSet plug-in hybrid electric vehicles (PHEVs) to Class-7 local delivery trucks and GenSet PHEV for Class-8 utility bucket trucks over widely real-world driving data performed by conventional heavy-duty trucks. GenSet refers to a PHEV range extension mode in which the PHEV engine is used only to generate electricity and charge the battery if the PHEV battery is out of electrical energy. A simulation tool based on vehicle tractive energy methodology and component efficiency for addressing component and system performance was developed to evaluate the energy consumption and performance of the trucks. As part of this analysis, various battery sizes combined with different charging powers on the e-trucks for local delivery, and utility bucket applications were investigated. The results show that the e-truck applications not only reduce energy consumption but also achieve significant energy cost savings. For delivery e-trucks, periodic stops at delivery sites provide sufficient time for battery charging, and for this reason, a high-power charger is not necessary. For utility bucket PHEV trucks, energy consumption per mile of bucket truck operation is typically higher because of longer idling times and extra high idling load associated with heavy utility work. The availability of en route charging is typically lacking at the worksites of bucket trucks; thus, the battery size of these trucks is somewhat larger than that of the delivery trucks studied.


Author(s):  
Andreas A. Malikopoulos ◽  
David E. Smith

The necessity for environmentally conscious vehicle designs in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change have induced significant investment towards enhancing the propulsion portfolio with new technologies. More recently, plug-in hybrid electric vehicles (PHEVs) have held great intuitive appeal and have attracted considerable attention. PHEVs have the potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the commercial transportation sector. They are especially appealing in situations where daily commuting is within a small amount of miles with excessive stop-and-go driving. The research effort outlined in this paper aims to investigate the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium-duty PHEV. An optimization framework is developed and applied to two different parallel powertrain configurations, e.g., pre-transmission and post-transmission, to derive the optimal design with respect to motor/generator and battery size. A comparison between the conventional and PHEV configurations with equivalent size and performance under the same driving conditions is conducted thus allowing an assessment of the fuel economy and GHG emissions potential improvement. The post-transmission parallel configuration yields higher fuel economy and less GHG emissions compared to pre-transmission configuration partly attributable to the enhanced regenerative braking efficiency.


2019 ◽  
Vol 9 (8) ◽  
pp. 1538 ◽  
Author(s):  
Po-Tuan Chen ◽  
Ping-Hao Pai ◽  
Cheng-Jung Yang ◽  
K. David Huang

This study investigated the matching designs between a power integration mechanism (PIM) and transmission system for single-motor parallel hybrid electric vehicles. The optimal matching design may lead to optimal efficiency and performance in parallel hybrid vehicles. The Simulink/Simscape environment is used to model the powertrain system of parallel hybrid electric vehicles, which the characteristics of the PIM, location of the gearbox at the driveline, and design of the gear ratio of a gearbox influenced. The matching design principles for torque-coupled–type PIM (TC-PIM) parameters and the location of the gearbox are based on the speed range of the electric motor and the internal combustion engine. The parameters of the TC-PIM (i.e., k 1 and k 2 ) are based on the k ratio theory. Numerical simulations of an extra-urban driving cycle and acceleration tests reveal that a higher k r a t i o has greater improved power-assist ability under a pre-transmission architecture. For example, a k r a t i o of 1.6 can improve the power-assist ability by 8.5% when compared with a k r a t i o of 1. By using an appropriate gear ratio and k r a t i o , the top speed of a hybrid electric vehicle is enhanced by 9.3%.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Jianbai Xu

Hybrid electric vehicles (HEV) are the most industrialized and marketable in electric vehicles. Referring to the basic structure and parameters adopted by PRIUS Hybrid of Toyota, this paper puts forward an optimization scheme of HEV. The parameters and type selection of power components are obtained according to the vehicle's dynamic formula. The optimized hybrid power system is built and simulated through the simulation platform AVL Cruise. Then the obtained economic and dynamic parameters are analyzed and compared with the original performance parameters, verifying that the optimized system has better performance.


Sign in / Sign up

Export Citation Format

Share Document