Pressureless, Low Temperature Sintering of Micro-scale Silver Paste for Die Attach for 300°C Applications

2014 ◽  
Vol 2014 (HITEC) ◽  
pp. 000165-000171 ◽  
Author(s):  
Fang Yu ◽  
R. Wayne Johnson ◽  
Michael Hamilton

Low temperature Ag sintering technology provides a lead-free die attachment compatible with high temperature (300°C) applications. Previous work with Ag sintering has required pressure during the sintering process or been limited to small area die. In this paper, the pressureless sintering of micro-scale silver paste is examined for larger (8mm × 8mm) area die. Experimental combinations included: Si die metallization (Ag and Au); thick film substrate metallization (Au, Ag and PdAg); and sintering temperature. For Au metallization (die and/or substrate), the initial shear strength results were good with 8mm × 8mm die sintered at lower temperatures (200°C). The shear strength was beyond the limit of the shear test machine (100 kg), corresponding to >15.3 MPa. However, after aging for 24 hours at 300°C, the shear strength dropped significantly. An SEM was used to characterize cross sections of as-built and aged sample. The decrease in die shear strength with high temperature sintering (250°C and 300°C) or high temperature aging is attributed to surface diffusion of Ag along the Au surface resulting in a dense Ag layer adjacent to the Au surface and a depletion layer within the die attach adjacent to the dense Ag layer. Shear failures occurred through the depleted region. For Ag metallization (die and substrate), no decrease in shear strength was observed with 300°C aging. Shear strength of 8 mm × 8 mm dies was >100 kg ( >15.3 MPa) as-built. The shear strength remained >15.3MPa after 3000 hours of 300°C aging.

Author(s):  
Brandon Prior

This paper will focus on emerging and fast growth package solutions to meet mobile products' density and cost requirements. A short review of where package miniaturization and modularization has taken us so far, and where it will lead in the next 5 years. Teardowns of high density systems and packages will be used to illustrate key points. Low temperature Ag sintering technology provides a lead-free die attachment compatible with high temperature (300°C) applications. Previous work with Ag sintering has required some pressure during the sintering process or been limited to small area die. In this paper, a pressureless sintering of micro-scale silver paste procedure is presented for large (8mm x 8mm) area die. Experimental combinations included: Ag metallized Si die, Au metallized Si die, Ag thick film substrate metallization, Au thick film substrate metallization, PdAg thick film metallization and sintering temperature. For Au metallization (die and/or substrate), the initial shear strength results were good with 8mm x 8mm die sintered at lower temperatures (200°C). The shear strength was out range of our shear test machine (100 kg), corresponding to >15.3 MPa. However, after aging for 24 hours at 300°C, the shear strength dropped significantly to 40.38 Kg (6.183 MPa). An SEM was used to characterize cross sections of as-built and aged sample. The decrease in die shear strength with high temperature sintering (250°C and 300°C) or high temperature aging is attributed to surface diffusion of Ag along the Au surface resulting in a dense Ag layer adjacent to the Au surface and a depletion layer within the die attach on the opposite side of the the dense Ag layer. Shear failures occurred through the depleted region. For Ag metallization, no decrease in shear strength was observed with 300°C aging. Shear strength of 8x8cm2 dies was out range of our shear test machine (>100 kg, >15.3 MPa) as-built. The shear strength remained out of range (>15.3MPa) after more than 2000 hours of 300C aging.


2014 ◽  
Vol 11 (1) ◽  
pp. 7-15
Author(s):  
Hannes Greve ◽  
F. Patrick McCluskey

Low temperature transient liquid phase sintering (LT-TLPS) can be used to form high-temperature joints between metallic interfaces at low process temperatures. In this paper, process analyses and shear strength studies of paste-based approaches to LT-TLPS are presented. The process progression studies include DSC analyses and observations of intermetallic compound (IMC) formation by cross-sectioning. It was found that the sintering process reaches completion after sintering times of 15 min for process temperatures approximately 50°C above the melting point of the low temperature constituent. For the shear studies, test samples consisting of copper dice and copper substrates joined by sintering with a variety of sinter pastes with different ratios of copper and tin have been assessed. A fixture was designed for high temperature enabled shear tests at 25°C, 125°C, 250°C, 400°C, and 600°C. The influence of the ratio of the amount of high melting-point constituent to the amount of low melting-point constituent on the maximum application temperature of the sinter paste was analyzed. Ag20Sn and Cu50Sn pastes showed no reduction in shear strength up to 400°C, and Cu40Sn pastes showed high shear strengths up to 600°C. It was shown that LT-TLPS can be used to form high temperature stable joints at low temperatures without the need to apply pressure during processing.


2013 ◽  
Vol 2013 (HITEN) ◽  
pp. 000246-000253 ◽  
Author(s):  
Hannes Greve ◽  
F. Patrick McCluskey

Low temperature transient liquid phase sintering (LT-TLPS) can be used to form high-temperature joints between metallic interfaces at low process temperatures. In this paper, process analysis and shear strength studies of paste-based approaches to LT-TLPS are presented. The process progression studies include DSC-analyses and observations of intermetallic compound (IMC) formation by cross-sectioning. It was found that the sintering process reaches completion after sintering times of 15 minutes for process temperatures around 50°C above the melting point of the low temperature constituent. For the shear strength studies, test samples consisting of copper dice and copper substrates joined by sintering with a variety of pastes having different ratios of copper and tin have been assessed. A fixture was designed for high temperatures enabled shear tests at 25°C, 125°C, 250°C, 400°C, and 600°C. The influence of the ratio of the amount of high melting-point constituent to the amount of low melting-point constituent on the maximum application temperature of the sinter paste was analyzed. Ag20Sn and Cu50Sn pastes showed no reduction in shear strength up to 400°C, Cu40Sn pastes showed high shear strengths up to 600°C, and extended curing further increased the joint strength. It was shown that LT-TLPS can be used to form high temperature stable joints at low temperatures without the need of applying pressure during processing.


2016 ◽  
Vol 37 (9) ◽  
pp. 1159-1165
Author(s):  
陈佳 CHEN Jia ◽  
李欣 LI Xin ◽  
孔亚飞 KONG Ya-fei ◽  
梅云辉 MEI Yun-hui ◽  
陆国权 LU Guo-quan

2014 ◽  
Vol 2014 (HITEC) ◽  
pp. 000347-000354 ◽  
Author(s):  
HongWen Zhang ◽  
RunSheng Mao ◽  
Ning-Cheng Lee ◽  
Satoshi Tanimoto

The BiAgX™ paste, designed for die attach application, composed of the majority of BiAg powders (melting point >260°C) and the minority of additive powders. The additive powders are dominating the interfacial reaction to improve the wetting of the paste on various commonly-used surface finish materials. After reflow, the joint shows the above 260°C remelting temperature. The average bond shear strength of BiAgX joint between SiC die and AMBC-SiN substrate (Package A) decreases from 54MPa to 16MPa with increasing temperature from RT to 250°C. Upon thermal storage at 200°C or 230°C for 3000hrs, the bond shear strength decreases from 54MPa to 38MPa and 21MPa, respectively. Upon thermal cycling from −55°C to 125°C for 2000cycles and thermal shock from −55°C to 150°C for 2000cycles, BiAgX outperforms Pb5Sn2.5Sn (Package B). BiAgX also show the better corrosion resistance than SAC305 and Pb5Sn2.5Ag under 96hrs salt water spray (SWS) tests.


2013 ◽  
Vol 2013 (HITEN) ◽  
pp. 000237-000245 ◽  
Author(s):  
G. Lewis ◽  
G. Dumas ◽  
S. H. Mannan

A commercially available silver nanoparticle based die attach material was used in a pressure free process to bond 2.5 mm square Ag plated Si die to Ag and Au plated substrates. The two substrate types were 5mm square Ni/Ag plated silicon substrate and a W/Ni/Au metallised cofired alumina package. The assemblies were stored at 300 °C for up to 500 h and the morphology of the sintered Ag and the shear strength was monitored as a function of time. Bondline thickness measurements were carried out after following the paste manufacturer's drying and sintering temperature profile. On Ag substrate it was found that die shear strength increased with storage time. The fracture surfaces of the sheared die and substrate as well as cross sections of untested die were examined using electron microscopy. It was found that the Ag grains grew in size and porosity decreased over time. There was also a clear difference in morphology between sintered Ag at the die edge and centre. During shearing the Ni layer was found to separate from the chip at the edges of the die after ageing. On Au substrate, it was found that die shear strength decreased with storage time. It was found that the Au diffused into the Ag, creating a low porosity Au-Ag layer. Ag also migrated towards the Au surface, leaving behind a layer of voids which contributed to weakening of the joint. Rapid Au diffusion was associated with the high density of grain boundaries arising from the sintering process.


2015 ◽  
Vol 2015 (HiTEN) ◽  
pp. 000073-000082
Author(s):  
Jinzi Cui ◽  
R. Wayne Johnson ◽  
Michael C. Hamilton

Nickel is a commonly used diffusion barrier for direct bond copper (DBC) substrates used in high temperature, high power applications. The Ni can be deposited by electroless or electrolytic plating and may be pure Ni, Ni:P, Ni:B or Ni:Co. The reactivity of these different Ni layers with AuGe and BiAgX® solder is explored. Specifically the reaction to form Ni-Ge intermetallics and NiBi3 during high temperature storage and the impact on die shear strength and failure mode are discussed.


Sign in / Sign up

Export Citation Format

Share Document