scholarly journals DNA barcoding unveils the first record of Andrena allosa for Italy and unexpected genetic diversity in Andrena praecox (Hymenoptera: Andrenidae)

2020 ◽  
Vol 52 (1) ◽  
pp. 71-75
Author(s):  
Maurizio Cornalba ◽  
Paolo Biella ◽  
Andrea Galimberti

DNA barcoding is well-known to support morphological species identification and it can be helpful for unveiling unexpected populations divergence patterns, especially in the context of the impacts on species posed by global change. In this note, we provided the first Italian record of the alpine mining bee Andrena allosa Warncke, 1975, confirmed with DNA barcoding. In addition, genetic identification of a specimen of Andrena praecox (Scopoli 1753) from western Italy pointed to an unexpected intraspecific genetic structuring at COI DNA barcoding region, with sequences from the Italian and the western sector of its global distribution differing 2.22% (p-dist) from populations of the eastern sector. Given the relevance of these records and of the genetic identity of bee populations from Italy, we argue that implementing molecular surveys in bee monitoring would surely contribute to the conservation of these important pollinators.

2014 ◽  
Vol 28 (5) ◽  
pp. 501 ◽  
Author(s):  
Lara Lopardo ◽  
Gabriele Uhl

The present study focusses on comparatively assessing the efficacy for DNA barcoding of the two most commonly used mitochondrial markers (cox1 and 16S) in a genus of erigonine spiders. In total, 53 specimens representing five species, including four multi-sampled species, were sampled from several European localities. Initial evaluation of species monophyly was performed through parsimony and Bayesian phylogenetic analyses. Efficacy of mitochondrial markers was tested using operational (including distance-, tree-based measures and Barcode Gap) and evolutionary criteria (using the General Mixed Yule-coalescent Model) for species delimitation. We propose that the cox1 marker can potentially overestimate analyses of biodiversity and thus might not be the preferred marker for DNA species identification and delimitation methods in Oedothorax. Instead, our results suggest that the 16S marker appears to be a promising candidate for such endeavour. Evaluating the contribution and suitability of markers to the re-identification of species, measured by their recovery of well established morphological species, is critical for future studies and for reliable results in species identification in spiders.


2014 ◽  
Vol 24 (2) ◽  
pp. 119-127 ◽  
Author(s):  
Fangping CHENG ◽  
Minxiao WANG ◽  
Song SUN ◽  
Chaolun LI ◽  
Yongshan ZHANG

Diversity ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 343
Author(s):  
Luca Vecchioni ◽  
Federico Marrone ◽  
Marco Arculeo ◽  
Uwe Fritz ◽  
Melita Vamberger

The geographical pattern of genetic diversity was investigated in the endemic Sicilian pond turtle Emys trinacris across its entire distribution range, using 16 microsatellite loci. Overall, 245 specimens of E. trinacris were studied, showing high polymorphic microsatellite loci, with allele numbers ranging from 7 to 30. STRUCTURE and GENELAND analyses showed a noteworthy, geographically based structuring of the studied populations in five well-characterized clusters, supported by a moderate degree of genetic diversity (FST values between 0.075 and 0.160). Possible explanations for the genetic fragmentation observed are provided, where both natural and human-mediated habitat fragmentation of the Sicilian wetlands played a major role in this process. Finally, some conservation and management suggestions aimed at preventing the loss of genetic variability of the species are briefly reported, stressing the importance of considering the five detected clusters as independent Management Units.


Mammalia ◽  
2020 ◽  
Vol 84 (6) ◽  
pp. 601-604
Author(s):  
Mariana Bueno Landis ◽  
Luciano Candisani ◽  
Leticia Prado Munhoes ◽  
João Carlos Zecchini Gebin ◽  
Frineia Rezende ◽  
...  

AbstractAlbinism is the absence of pigmentation or coloration and is rarely found in nature. In this study we examined photos and videos obtained by cameras traps in the Legado das Águas Reserve. In the images, we identified two albino lowland tapirs. The results highlight the necessity of understanding the genetic diversity of lowland tapir populations and the important role of the professional photography associated with scientific research.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Agnieszka Sutkowska ◽  
Józef Mitka ◽  
Tomasz Warzecha ◽  
Jakub Bunk ◽  
Julia Rutkowska ◽  
...  

AbstractThe genetic diversity in 11 populations of Gladiolus imbricatus in five mountain ranges, including the Tatra, Pieniny, Gorce, Beskid Niski (Western Carpathians) and Bieszczady Mts (Eastern Carpathians), was studied with inter-simple sequence repeat (ISSR) markers. The species is a perennial plant occurring in open and semi-open sites of anthropogenic origin (meadows and forest margins). We checked a hypothesis on the microrefugial character of the plant populations in the Pieniny Mts, a small calcareous Carpathian range of complicated relief that has never been glaciated. Plant populations in the Tatra and Pieniny Mts had the highest genetic diversity indices, pointing to their long-term persistence. The refugial vs. the non-refugial mountain ranges accounted for a relatively high value of total genetic variation [analysis of molecular variance (AMOVA), 14.12%, p = 0.003]. One of the Pieniny populations was of hybridogenous origin and shared genetic stock with the Tatra population, indicating there is a local genetic melting pot. A weak genetic structuring of populations among particular regions was found (AMOVA, 4.5%, p > 0.05). This could be an effect of the frequent short-distance and sporadic long-distance gene flow. The dispersal of diaspores between the remote populations in the Western Carpathians and Eastern Carpathians could be affected by the historical transportation of flocks of sheep from the Tatra to Bieszczady Mts.


Mammalia ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Álvaro J. Benítez ◽  
Dina Ricardo-Caldera ◽  
María Atencia-Pineda ◽  
Jesús Ballesteros-Correa ◽  
Julio Chacón-Pacheco ◽  
...  

Abstract Bats are mammals of great ecological and medical importance, which have associations with different pathogenic microorganisms. DNA barcoding is a tool that can expedite species identification using short DNA sequences. In this study, we assess the DNA barcoding methodology in bats from the Colombian Northern region, specifically in the Córdoba department. Cytochrome oxidase subunit I (COI) gene sequences of nine bat species were typified, and their comparison with other Neotropic samples revealed that this marker is suitable for individual species identification, with ranges of intra-species variation from 0.1 to 0.9%. Bat species clusters are well supported and differentiated, showing average genetic distances ranging from 3% between Artibeus lituratus and Artibeus planirostris, up to 27% between Carollia castanea and Molossus molossus. C. castanea and Glossophaga soricina show geographical structuring in the Neotropic. The findings reported in this study confirm DNA barcoding usefulness for fast species identification of bats in the region.


Genome ◽  
2006 ◽  
Vol 49 (7) ◽  
pp. 851-854 ◽  
Author(s):  
Mehrdad Hajibabaei ◽  
Gregory AC Singer ◽  
Donal A Hickey

DNA barcoding has been recently promoted as a method for both assigning specimens to known species and for discovering new and cryptic species. Here we test both the potential and the limitations of DNA barcodes by analysing a group of well-studied organisms—the primates. Our results show that DNA barcodes provide enough information to efficiently identify and delineate primate species, but that they cannot reliably uncover many of the deeper phylogenetic relationships. Our conclusion is that these short DNA sequences do not contain enough information to build reliable molecular phylogenies or define new species, but that they can provide efficient sequence tags for assigning unknown specimens to known species. As such, DNA barcoding provides enormous potential for use in global biodiversity studies.Key words: DNA barcoding, species identification, primate, biodiversity.


Sign in / Sign up

Export Citation Format

Share Document