scholarly journals Towards precipitation enhancement through cloud seeding in Kenya

2015 ◽  
Vol 3 (1) ◽  
Author(s):  
Joshua Ngaina ◽  
Nzioka Muthama ◽  
Joseph Ininda ◽  
Alfred Opere ◽  
Bethwel Mutai

The study investigated potential of enhancing precipitation through cloud seeding during October-November-December (OND) season. Rainfall, cloud top temperature (CTT), aerosol optical depth (AOD) and wind data were used. Short-Cut Bartlett correlation, composite wind and time series analysis, and HYSPLIT backward trajectory analysis were used to achieve the objectives of study. Precipitation showed decreasing patterns with peaks between pentad 65 and 68. Delineated dry years (18) exceeded wet years (9). Low level winds were predominantly north-easterly during dry years characterized by continental trajectory. AOD values increased in all stations during dry year with aerosol load being higher in areas characterized by depressed rainfall. Pollutants suspended 1000 above mean sea level (AMSL) originated from Arabian and India subcontinent and pollutants suspended below 1000 AMSL were predominantly south easterly during wet years originated from Western Indian Ocean and characterized by maritime trajectory. Mean CTT during dry/wet years were positve over coastal areas while central, Rift-valley and Lake Victoria basin showed negative values, indicating presence of seedable conditions and thus potential cloud seeding to enhance rainfall and alleviate existing water stress.

Parasitology ◽  
2011 ◽  
Vol 139 (1) ◽  
pp. 14-25 ◽  
Author(s):  
LUIS FERNANDO CHAVES ◽  
MASAHIRO HASHIZUME ◽  
AKIKO SATAKE ◽  
NOBORU MINAKAWA

SUMMARYLarge malaria epidemics in the East African highlands during the mid and late 1990s kindled a stream of research on the role that global warming might have on malaria transmission. Most of the inferences using temporal information have been derived from a malaria incidence time series from Kericho. Here, we report a detailed analysis of 5 monthly time series, between 15 and 41 years long, from West Kenya encompassing an altitudinal gradient along Lake Victoria basin. We found decreasing, but heterogeneous, malaria trends since the late 1980s at low altitudes (<1600 m), and the early 2000s at high altitudes (>1600 m). Regime shifts were present in 3 of the series and were synchronous in the 2 time series from high altitudes. At low altitude, regime shifts were associated with a shift from increasing to decreasing malaria transmission, as well as a decrease in variability. At higher altitudes, regime shifts reflected an increase in malaria transmission variability. The heterogeneity in malaria trends probably reflects the multitude of factors that can drive malaria transmission and highlights the need for both spatially and temporally fine-grained data to make sound inferences about the impacts of climate change and control/elimination interventions on malaria transmission.


2005 ◽  
Vol 44 (6) ◽  
pp. 760-767 ◽  
Author(s):  
Daniel Rosenfeld ◽  
Xing Yu ◽  
Jin Dai

Abstract NOAA Advanced Very High Resolution Radiometer (AVHRR) images revealed conspicuous tracks of glaciated cloud in thick supercooled layer clouds over central China. These tracks were identified as being artificially produced by cloud-seeding operations at the −10°C isotherm, less than 1 km below cloud tops, aimed at precipitation enhancement, by means of AgI acetone generators. The cloud composition was deduced by retrieving the cloud-top effective radius (re) and analyzing its spatial relations with cloud-top temperatures and with the visible reflectance. Cloud-top temperature varied between −13° and −17°C. The glaciation became apparent at cloud tops about 22 min after seeding. The glaciated tops sank and formed a channel in the supercooled layer cloud. The rate of sinking of about 40 cm s−1 is compatible with the fall velocity of ice crystals that are likely to form at these conditions. A thin line of new water clouds formed in the middle of the channel of the seeded track between 38 and 63 min after seeding, probably as a result of rising motions induced by the released latent heat of freezing. These clouds disappeared in the more mature segments of the seeded track, which continued to expand throughout the observation period of more than 80 min. Eventually the seeding tracks started to dissipate by expansion of the ambient cloud tops inward from the sides. Using the brightness temperature difference between 10.8 and 12.0 μm allowed for observation of the seeding signature deep in the clouds, even when it was obscured under thin supercooled layer clouds. This is the third and most detailed report of effects of advertent cloud seeding for precipitation enhancement being detected and analyzed based on satellite observations. It opens new possibilities of using satellites for directing and monitoring weather modification experiments and operations.


Author(s):  
David Lopez-Carr ◽  
Kevin M. Mwenda ◽  
Narcisa G. Pricope ◽  
Phaedon C. Kyriakidis ◽  
Marta M. Jankowska ◽  
...  

2017 ◽  
Vol 21 (9) ◽  
pp. 4533-4549 ◽  
Author(s):  
Mohammad Shamsudduha ◽  
Richard G. Taylor ◽  
Darren Jones ◽  
Laurent Longuevergne ◽  
Michael Owor ◽  
...  

Abstract. GRACE (Gravity Recovery and Climate Experiment) satellite data monitor large-scale changes in total terrestrial water storage (ΔTWS), providing an invaluable tool where in situ observations are limited. Substantial uncertainty remains, however, in the amplitude of GRACE gravity signals and the disaggregation of TWS into individual terrestrial water stores (e.g. groundwater storage). Here, we test the phase and amplitude of three GRACE ΔTWS signals from five commonly used gridded products (i.e. NASA's GRCTellus: CSR, JPL, GFZ; JPL-Mascons; GRGS GRACE) using in situ data and modelled soil moisture from the Global Land Data Assimilation System (GLDAS) in two sub-basins (LVB: Lake Victoria Basin; LKB: Lake Kyoga Basin) of the Upper Nile Basin. The analysis extends from January 2003 to December 2012, but focuses on a large and accurately observed reduction in ΔTWS of 83 km3 from 2003 to 2006 in the Lake Victoria Basin. We reveal substantial variability in current GRACE products to quantify the reduction of ΔTWS in Lake Victoria that ranges from 80 km3 (JPL-Mascons) to 69 and 31 km3 for GRGS and GRCTellus respectively. Representation of the phase in TWS in the Upper Nile Basin by GRACE products varies but is generally robust with GRGS, JPL-Mascons, and GRCTellus (ensemble mean of CSR, JPL, and GFZ time-series data), explaining 90, 84, and 75 % of the variance respectively in "in situ" or "bottom-up" ΔTWS in the LVB. Resolution of changes in groundwater storage (ΔGWS) from GRACE ΔTWS is greatly constrained by both uncertainty in changes in soil-moisture storage (ΔSMS) modelled by GLDAS LSMs (CLM, NOAH, VIC) and the low annual amplitudes in ΔGWS (e.g. 1.8–4.9 cm) observed in deeply weathered crystalline rocks underlying the Upper Nile Basin. Our study highlights the substantial uncertainty in the amplitude of ΔTWS that can result from different data-processing strategies in commonly used, gridded GRACE products; this uncertainty is disregarded in analyses of ΔTWS and individual stores applying a single GRACE product.


Sign in / Sign up

Export Citation Format

Share Document