Identifying anthropogenic and natural influences on extreme pollution of respirable suspended particulates in Beijing using backward trajectory analysis

2008 ◽  
Vol 154 (1-3) ◽  
pp. 459-468 ◽  
Author(s):  
Yu Song ◽  
Weijie Miao ◽  
Bing Liu ◽  
Wei Dai ◽  
Xuhui Cai
2003 ◽  
Vol 11 ◽  
pp. 133-138
Author(s):  
Gakuji KURATA ◽  
Toshihiro KITADA ◽  
Kouhei YAMAMOTO ◽  
Gregory R. CARMICHAEL ◽  
Youhua TANG

Author(s):  
K. J. Moon ◽  
B. J. Kong ◽  
J. S. Han ◽  
Y. S. Ghim

Aims: This study aimed to study the long-range transport of anthropogenic carbonaceous aerosol at Gosan, Korea Study Design: Chemical composition of fine particles (aerodynamic diameter < 2.5㎛) and PAHs of TSP measured at Gosan during six intensive measurement periods covering four seasons. And the chemical characteristics of particulate matter were classified and compared each other according to the major source areas identified by using backward trajectory analysis in order to study the impact of distant source regions on the carbonaceous aerosol at Gosan, Korea. Place and Duration of Study: Sample: Gosan, Jeju Island in Republic of Korea, from 13 to 25 Nov. 2001, from 29 Mar. to 11 Apr. 2002, from 27 Aug. to 11 Sep. 2002, from 14 to 26 Feb 2003, from 6 to 22 Jun. 2003, and from 18 Aug. to 1 Sep. 2003. Methodology: In order to investigate the chemical composition of fine particles, 7 major ion components, 21 trace elements, organic and elemental carbon of PM2.5 were measured. In addition, particulate hazardous pollutants including 17 polycyclic aromatic hydrocarbons (PAHs) were analyzed. The measured data were classified according to the dominant source area identified with the three-day backward trajectory analysis. Then several ratios of species combining EC, OC, SO42-, K+ and PAH compounds were used to identify potential sources of carbonaceous materials. Results: Quite different characteristic in the chemical composition of fine particles was observed by regional groups of backward trajectories. Concentrations of ion components including secondary aerosol such as SO42- and NH4+ were relatively high when air masses were originated from north China. Concentrations of OC and gaseous PAHs were higher when they transported from Japan than from other source regions. High concentrations of secondary aerosols as well as particulate PAHs were observed in the air mass from north China with a higher correlation between them. Elemental carbon had a better correlation in this case not only with secondary aerosols, but also with OC and CO, implying that carbonaceous materials were originated from long-distance combustion sources. Especially positive correlation with benzo(ghi)perylene suggested that they also had a vehicular origin. Conclusion: The results showed that biomass burning and vehicular emissions mainly influenced ambient fine particles when they derived from north China and the Korea peninsula while fossil fuel combustion chiefly affected them when they originated in south China during six intensive measurement periods.


2015 ◽  
Vol 3 (1) ◽  
Author(s):  
Joshua Ngaina ◽  
Nzioka Muthama ◽  
Joseph Ininda ◽  
Alfred Opere ◽  
Bethwel Mutai

The study investigated potential of enhancing precipitation through cloud seeding during October-November-December (OND) season. Rainfall, cloud top temperature (CTT), aerosol optical depth (AOD) and wind data were used. Short-Cut Bartlett correlation, composite wind and time series analysis, and HYSPLIT backward trajectory analysis were used to achieve the objectives of study. Precipitation showed decreasing patterns with peaks between pentad 65 and 68. Delineated dry years (18) exceeded wet years (9). Low level winds were predominantly north-easterly during dry years characterized by continental trajectory. AOD values increased in all stations during dry year with aerosol load being higher in areas characterized by depressed rainfall. Pollutants suspended 1000 above mean sea level (AMSL) originated from Arabian and India subcontinent and pollutants suspended below 1000 AMSL were predominantly south easterly during wet years originated from Western Indian Ocean and characterized by maritime trajectory. Mean CTT during dry/wet years were positve over coastal areas while central, Rift-valley and Lake Victoria basin showed negative values, indicating presence of seedable conditions and thus potential cloud seeding to enhance rainfall and alleviate existing water stress.


2018 ◽  
Vol 32 (1) ◽  
pp. 109-115 ◽  
Author(s):  
Chunsheng Fang ◽  
Jialu Gao ◽  
Dali Wang ◽  
Diansheng Wang ◽  
Ju Wang

2002 ◽  
Vol 10 ◽  
pp. 209-214
Author(s):  
Toshiaki SHITABA ◽  
Naoto MURAO ◽  
Sachio OHTA ◽  
Sadamu YAMAGATA

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249563
Author(s):  
Zongying Li ◽  
Yao Wang ◽  
Zhonglin Xu ◽  
Yue’e Cao

The arid zone of central Asia secluded inland and has the typical features of the atmosphere. Human activities have had a significant impact on the air quality in this region. Urumqi is a key city in the core area of the Silk Road and an important economic center in Northwestern China. The urban environment is playing an increasingly important role in regional development. To study the characteristics and influencing factors of the main atmospheric pollutants in Urumqi, this study selected Urumqi’s daily air quality index (AQI) data and observation data of six major pollutants including fine particulate matter (PM2.5), breathable particulate matter (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3_8h) from 2014 to 2018 in conjunction with meteorological data to use a backward trajectory analysis method to study the main characteristics of atmospheric pollutants and their sources in Urumqi from 2014 to 2018. The results showed that: (1) From 2014 to 2018, the annual average of PM2.5, PM10, SO2, NO2 and CO concentrations showed a downward trend, and O3_8h concentrations first increased, then decreased, and then increased, reaching the highest value in 2018 (82.15 μg·m-3); The seasonal changes of PM2.5, PM10, SO2, NO2 and CO concentrations were characterized by low values in summer and fall seasons and high values in winter and spring seasons. The concentration of O3_8h, however, was in the opposite trend, showing the high values in summer and fall seasons, and low values in winter and spring seasons. From 2014 to 2018, with the exception of O3_8h, the concentration changes of the other five major air pollutants were high in December, January, and February, and low in May, June, and July; the daily changes showed a “U-shaped” change during the year. The high-value areas of the "U-shaped" mode formed around the 50th day and the 350th day. (2) The high-value area of AQI was from the end of fall (November) to the beginning of the following spring (March), and the low-value area was from April to October. It showed a U-shaped change trend during the year and the value was mainly distributed between 50 and 100. (3) The concentrations of major air pollutants in Urumqi were significantly negatively correlated with precipitation, temperature, and humidity (P<0.01), and had the highest correlation coefficients with temperature. (4) Based on the above analysis results, this study analyzed two severe pollution events from late November to early December. Analysis showed that the PM2.5/PM10 ratio in two events remained at about 0.1 when the pollution occurred, but was higher before and after the pollution (up to 1.46). It was shown that the pollution was a simple sandstorm process. Backward trajectory analysis clustered the airflow trajectories reaching Urumqi into 4 categories, and the trajectories from central Asia contributed the maximum values of average PM2.5 and PM10 concentrations.


Polar Science ◽  
2013 ◽  
Vol 7 (3-4) ◽  
pp. 205-213 ◽  
Author(s):  
Kazue Suzuki ◽  
Takashi Yamanouchi ◽  
Kenji Kawamura ◽  
Hideaki Motoyama

2020 ◽  
Author(s):  
Masayasu Taki ◽  
Keiji Kajiwara ◽  
Eriko Yamaguchi ◽  
Yoshikatsu Sato ◽  
Shigehiro Yamaguchi

Lipid droplets (LDs) are essential organelle in most eukaryotes, and tracking intracellular LDs dynamics using synthetic small molecules is crucial for biological studies. However, only a limited number of fluorescent markers that satisfy all requirements, such as the selective staining of LDs, high photostability, and sufficient biocompatibility, have been developed. Herein, we report a series of donor-p-acceptor dyes based on the thiophene-containing fused polycyclic scaffold [1]benzothieno[3,2-<i>b</i>][1]benzothiophene (BTBT), in which either or both thiophene rings are oxidized into thiophene-<i>S</i>,<i>S</i>-dioxide to form an electron-accepting building block. Among these dyes, LAQ1 satisfied all the aforementioned requirements, and allowed us capturing ultra-small LDs on the endoplasmic reticulum (ER) membrane by stimulation emission depletion (STED) microscopy with a super-resolution below the diffraction limit of light. Moreover, the extremely high photostability of LAQ1 enabled recording the lipolysis of LDs and the concomitant lipogenesis as well as long-term trajectory analysis of micro LDs at the single particle level in living cells.


Sign in / Sign up

Export Citation Format

Share Document