scholarly journals Predicting plot soil loss by empirical and process-oriented approaches. A review

2018 ◽  
Vol 49 (1) ◽  
pp. 1-18
Author(s):  
Vincenzo Bagarello ◽  
Vito Ferro ◽  
Dennis Flanagan

Soil erosion directly affects the quality of the soil, its agricultural productivity and its biological diversity. Many mathematical models have been developed to estimate plot soil erosion at different temporal scales. At present, empirical soil loss equations and process-oriented models are considered as constituting a complementary suite of models to be chosen to meet the specific user need. In this paper, the Universal Soil Loss Equation and its revised versions are first reviewed. Selected methodologies developed to estimate the factors of the model with the aim to improve the soil loss estimate are described. Then the Water Erosion Prediction Project which represents a process-oriented technology for soil erosion prediction at different spatial scales, is presented. The available criteria to discriminate between acceptable and unacceptable soil loss estimates are subsequently introduced. Finally, some research needs, concerning tests of both empirical and process-oriented models, estimates of the soil loss of given return periods, reliability of soil loss measurements, measurements of rill and gully erosion, and physical models are delineated.

2020 ◽  
Vol 13 (3) ◽  
pp. 1117
Author(s):  
Julio Caetano Tomazoni ◽  
Ana Paula Vansan

Este trabalho tem como objetivo avaliar a erosão hídrica laminar do solo, por meio da Equação Universal de Perdas de Solos Revisada (RUSLE) na bacia hidrográfica do rio São José, localizada no município de Francisco Beltrão (PR).  A perda de solo média anual (A) foi determinada através da RUSLE para os anos 2000, 2005, 2009, 2015 e 2017 utilizando-se técnicas de geoprocessamento com o auxílio do software ArcGis 10.0. O fator erosividade da chuva (R) foi determinado utilizando-se dados pluviométricos correspondentes ao período de 1974 a 2016. O fator erodibilidade do solo (K) foi obtido através da análise de amostras de solo coletadas in loco. O fator topográfico (LS) foi estimado por meio dos dados altimétricos e hidrográficos da bacia. Os fatores de uso e manejo do solo (C) e de práticas conservacionistas do solo (P) foram determinados por meio da caracterização multitemporal do uso e ocupação do solo, através de imagens de satélite. O potencial natural de erosão (PNE) foi determinado pela multiplicação dos fatores R, K e LS.A estimativa de perda de solo (A) foi determinada pela multiplicação do PNE pelos fatores C e P.  Use of Geoprocessing Techniques to Study Laminar Water Erosion in Watershed of Southwest Paraná A B S T R A C TThe objective of this work is evaluate the soil erosion by the Universal Equation of Soil Losses Revised (RUSLE) in the São José river basin, located in the municipality of Francisco Beltrão (PR). The average annual soil loss (A) was determined through RUSLE for the years 2000, 2005, 2009, 2015 and 2017 using geoprocessing techniques with ArcGis 10.0 software. Rainfallerosivity (R) was determined using rainfall data from 1974 to 2016, being determined at 11521.26 11521,26 MJ.mm.ha-1.h-1.year-1. The soil erodibility factor (K) was obtained through the analysis of soil samples collected on the spot (0,03018 t.ha.h/ha.MJ.mm, 0,02771 t.ha.h/ha.MJ.mm e 0,02342 t.ha.h/ha.MJ.mm). The topographic factor (LS) was estimated by the altimetric and hydrographic data of the basin. Soil use and management (C) and soil conservation (P) were determined through multitemporal characterization of land use and occupation, using satellite images. The natural erosion potential (NEP) was determined by multiplying the R, K and LS factors, with more than half of the total area of the watershed with very strong PNE. The soil loss estimate (A) was determined by multiplying the NEP by factors C and P with predominance of the class called low (0 to 10 t/ha/year) denoting the reduction of erosion rates through factors C and P, helping to protect the soil from the erosion process.Key words: Soil Erosion; Watershed, Revised Universal Soil Loss Equation, Geoprocessing, Software.


1989 ◽  
Vol 32 (5) ◽  
pp. 1587-1593 ◽  
Author(s):  
M. A. Nearing ◽  
G. R. Foster ◽  
L. J. Lane ◽  
S. C. Finkner

HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 587d-587
Author(s):  
Iris Cole-Crosby ◽  
Jesse Harness ◽  
Patrick Igbokwe

The cultural and management practices for Irish Potato and Sweet Potato were monitored, along with various plant growth parameters. Data was collected on row width, plant spacing, irrigation, root mass, plant population, vegetative dry matter, canopy height, yeild, above ground biomass, root depth, canopy cover, leaf area index, and stem diameter. Climatic parameters such as rainfall, average daily temperatures, and growing degree days. The data was imputed into the erosion prediction model WEPP (Water Erosion Prediction Project) and the annual soil loss was compared between the crops. Results suggest that Irish Potato is better crop for conserving soil.


Soil Systems ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 48 ◽  
Author(s):  
Julian J. Zemke ◽  
Joshua Pöhler ◽  
Stephan Stegmann

This study investigates the effects of pumice excavation on runoff formation and soil erosion processes in a forested catchment in SW-Germany. The underlying questions are, if (a) backfilled soils have different properties concerning runoff generation and erodibility and if (b) clear-cutting prior to excavation triggers runoff and erosion. Four adjacent sub-areas were observed, which represented different pre- and post-excavation-stages. The basis of the investigation was a comprehensive field sampling that delivered the data for physical erosion modeling using the Water Erosion Prediction Project (WEPP). Modeling took place for standardized conditions (uniform slope geometry and/or uniform land management) and for actual slope geometry and land management. The results show that backfilled soils exhibited 53% increase of annual runoff and 70% increase of annual soil loss under standardized conditions. Storm runoff was increased by 6%, while storm soil loss was reduced by 9%. Land management changes also triggered shifts in annual runoff and soil erosion: Clear-cut (+1.796% runoff, +4.205% soil loss) and bare (+5.958% runoff, +21.055% soil loss) surfaces showed the most distinct changes when compared to undisturbed forest. While reforestation largely diminished post-excavation runoff and soil erosion, the standardized results statistically prove that soil erodibility and runoff generation remain increased after backfilling.


Soil Research ◽  
1992 ◽  
Vol 30 (6) ◽  
pp. 893 ◽  
Author(s):  
LJ Lane ◽  
KG Renard ◽  
GR Foster ◽  
JM Laflen

Erosion prediction efforts are described to provide a synopsis of the USDA's experience in developing and applying soil erosion prediction technology in its research and development activities and its soil conservation programs. For almost five decades, equations to predict soil erosion by water have been useful m developing plans for controlling soil erosion and sedimentation. The Universal Soil Low Equation (USLE) is the most widely known and used of the erosion prediction equations. The USLE presents a simply understood and easily applied technology which has been of incalculable benefit to soil conservation and land management. The Chemicals, Runoff, and Erosion from Agricultural Management Systems Model (CREAMS) contains a sophisticated erosion component based, in part, on the USLE and on flow hydraulics and the processes of sediment detachment, transport, and deposition. In 1985, the USDA in cooperation with BLM and several universities initiated a national project called the Water Erosion Prediction Project (WEPP) to develop a next generation water erosion prediction technology. The Revised Universal Soil Loss Equation (RUSLE) is an update of the USLE to improve erosion prediction in the interim before WEPP is adopted and to provide and adjunct technology thereafter.


Author(s):  
Deepanshu Agarwal ◽  
Kunal Tongaria ◽  
Siddhartha Pathak ◽  
Anurag Ohri ◽  
Medha Jha

Soil erosion is one of the serious issues threatening the environment. It is a growing problem especially in areas of agricultural activity where soil erosion not only leads to de-creased agricultural productivity but also reduces water availability. This leads to drastic degradation of the agricultural lands. So there is a need to take up conservation and management measures which can be applied to check further soil erosion. Universal Soil Loss Equation (USLE) is the most popular empirically based model used globally for erosion prediction and control. Remote sensing and GIS techniques have become valuable tools for the digitization of the input data and genereation of maps. In the present study, RUSLE model has been adopted to estimate the soil erosion in the Khajuri watershed of Uttar Pradesh, India. This model involves calculation of parameters including runoff-rainfall erosivity factor (R), soil erodability Factor (K), topographic factor  (LS), cropping management factor (C), and support practice factor (P). Layer wise thematic maps of each of these factors were generated using GIS platform using various data sources and data preparation methods. The results of the study indicate that the annual average soil loss within the watershed is about  t/ha/yr (metric ton per hectare per year).


Sign in / Sign up

Export Citation Format

Share Document