Effects of DEM resolutions on soil erosion prediction using Chinese Soil loss Equation

Geomorphology ◽  
2021 ◽  
pp. 107706
Author(s):  
Ao Li ◽  
X.C.(John) Zhang ◽  
Baoyuan Liu
Jurnal Solum ◽  
2008 ◽  
Vol 5 (2) ◽  
pp. 88
Author(s):  
Adrinal Adrinal ◽  
Utri Luki ◽  
Pedri Kasman

An erosion prediction using Universal Soil Loss Equation (USLE) was conducted from August 2006 to February 2007.  The research was aimed to predict amount of soil erosion and erosion risk rate of ex-obsidian mining of Kalulutan and Ipuh River, Padang Pariaman District.  The result showed that the highest soil erosion was predicted under ex-obsidian mining (45% slope) namely 2.593 t/ha/y and the lowest was found under mixed farm (3-8% slope), 4,95 t/ha/y. Erosion risk rate of ex-obsidian mining was very heavy whilst for mixed farm varied from light to very heavy.   Keyword: erosion prediction, ex-obsidian mining, Sub-catchments area


2011 ◽  
Vol 14 (4) ◽  
pp. 86-96
Author(s):  
Tu Tuan Tran

Soil water erosion is a serious environmental problem affecting large areas of the agricultural ecosystem in Nambo Eastern. Soil erosion not only affects soil quality, in terms of agricultural productivity, but also reduces the availability of water in reservoirs. This study was conducted in the Song Be watershed in Nambo Eastern, to predict potential annual soil loss using the revised universal soil loss equation (RUSLE). The RUSLE factors were calculated for the Song Be watershed: using survey data and rain gauge measurement data. TheRfactor was calculated from annual precipitation data. The K-factor was calculated from soil map scale 1/100000. The LS topographic factor was calculated from a 90 m digital elevation model. The C-factor was calculated from Landsat image. P-factor in absence of detailed data, were set to 1.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 460C-460
Author(s):  
G.K. Panicker ◽  
G.A. Weesies ◽  
A.H. Al-Humadi ◽  
C. Sims ◽  
L.C. Huam ◽  
...  

Even though research and education systems have transformed agriculture from a traditional to a high-technology sector, soil erosion still remains as a major universal problem to agricultural productivity. The Universal Soil Loss Equation (USLE) and its replacement, the Revised Universal Soil Loss Equation (RUSLE) are the most widely used of all soil erosion prediction models. Of the five factors in RUSLE, the cover and management (C) factor is the most important one from the standpoint of conservation planning because land use changes meant to reduce erosion are represented here. Even though the RUSLE is based on the USLE, this modern erosion prediction model is highly improved and updated. Alcorn State Univ. entered into a cooperative agreement with the NRCS of the USDA in 1988 to conduct C-factor research on vegetable and fruit crops. The main objective of this research is to collect plant growth and residue data that are used to populated databases needed to develop C-factors in RUSLE, and used in databases for other erosion prediction and natural resource models. The enormous data collected on leaf area index (LAI), canopy cover, lower and upper biomass, rate of residue decomposition, C:N ratio of samples of residues and destructive harvest and other gorwth parameters of canopy and rhizosphere made the project the largest data bank on horticultural crops. The philosophy and methodology of data collection will be presented.


2020 ◽  
Vol 13 (1) ◽  
pp. 51
Author(s):  
Alexandra Pagáč Mokrá ◽  
Jakub Pagáč ◽  
Zlatica Muchová ◽  
František Petrovič

Water erosion is a phenomenon that significantly damages agricultural land. The current land fragmentation in Slovakia and the complete ambiguity of who owns it leads to a lack of responsibility to care for the land in its current condition, which could affect its sustainability in the future. The reason so much soil has eroded is obvious when looking at current land management, with large fields, a lack of windbreaks between them, and no barriers to prevent soil runoff. Land consolidation might be the solution. This paper seeks to evaluate redistributed land and, based on modeling by the Universal Soil Loss Equation (USLE) method, to assess the degree of soil erosion risk. Ownership data provided information on how many owners and what amount of area to consider, while taking into account new conditions regarding water erosion. The results indicate that 2488 plots of 1607 owners which represent 12% of the model area are still endangered by water erosion, even after the completion of the land consolidation project. The results also presented a way of evaluating the territory and aims to trigger a discussion regarding an unambiguous definition of responsibility in the relationship between owner and user.


Author(s):  
Hammad Gilani ◽  
Adeel Ahmad ◽  
Isma Younes ◽  
Sawaid Abbas

Abrupt changes in climatic factors, exploitation of natural resources, and land degradation contribute to soil erosion. This study provides the first comprehensive analysis of annual soil erosion dynamics in Pakistan for 2005 and 2015 using publically available climatic, topographic, soil type, and land cover geospatial datasets at 1 km spatial resolution. A well-accepted and widely applied Revised Universal Soil Loss Equation (RUSLE) was implemented for the annual soil erosion estimations and mapping by incorporating six factors; rainfall erosivity (R), soil erodibility (K), slope-length (L), slope-steepness (S), cover management (C) and conservation practice (P). We used a cross tabular or change matrix method to assess the annual soil erosion (ton/ha/year) changes (2005-2015) in terms of areas and spatial distriburtions in four soil erosion classes; i.e. Low (<1), Medium (1–5], High (5-20], and Very high (>20). Major findings of this paper indicated that, at the national scale, an estimated annual soil erosion of 1.79 ± 11.52 ton/ha/year (mean ± standard deviation) was observed in 2005, which increased to 2.47 ±18.14 ton/ha/year in 2015. Among seven administrative units of Pakistan, in Azad Jammu & Kashmir, the average soil erosion doubled from 14.44 ± 35.70 ton/ha/year in 2005 to 28.03 ± 68.24 ton/ha/year in 2015. Spatially explicit and temporal annual analysis of soil erosion provided in this study is essential for various purposes, including the soil conservation and management practices, environmental impact assessment studies, among others.


2019 ◽  
Vol 8 (2) ◽  
pp. 3936-3939

Soil erosion is one of the most serious environmental problem which must be taken in to consideration to prevent economic imbalances in nature. Soil erosion not only affect the agricultural productivity but also increases level of sedimentation. The study was carried out to determine the soil erosion for the watershed which is located in Godavari middle sub basin, Nanded district, Maharashtra state (India). The universal soil loss equation (USLE) and Geographic information system (GIS) technique was used to determine soil erosion. Present study revealed that, the study area is under moderate erosion with an average soil loss 7.233 tones/ha/yr. Where as minimum and maximum erosion rate observed as 5.39 tones/ha/yr to 10.27 tones/ha/yr respectively. The various maps of USLE factors prepared in QGIS environment. Statistically significant relationship obtained between soil loss and cover management factor (C). It was observed that C factor more influences in soil loss than any other factor.


Author(s):  
Sumayyah Aimi Mohd Najib

To determine the soil erosion in ungauged catchments, the author used 2 methods: Universal Soil Loss Equation model and sampling data. Sampling data were used to verify and validate data from model. Changing land use due to human activities will affect soil erosion. Land use has changed significantly during the last century in Pulau Pinang. The main rapid changes are related to agriculture, settlement, and urbanization. Because soil erosion depends on surface runoff, which is regulated by the structure of land use and brought about through changes in slope length, land-use changes are one of many factors influencing land degradation caused by erosion. The Universal Soil Loss Equation was used to estimate past soil erosion based on land uses from 1974 to 2012. Results indicated a significant increase in three land-use categories: forestry, built-up areas, and agriculture. Another method to evaluate land use changes in this study was by using landscape metrics analysis. The mean patch size of built-up area and forest increased, while agriculture land use decreased from 48.82 patches in 1974 to 22.46 patches in 2012. Soil erosion increased from an estimated 110.18 ton/km2/year in 1974 to an estimated 122.44 ton/km2/year in 2012. Soil erosion is highly related (R2 = 0.97) to the Shannon Diversity Index, which describes the diversity in land-use composition in river basins. The Shannon Diversity Index also increased between 1974 and 2012. The findings from this study can be used for future reference and for ungauged catchment research studies.


Sign in / Sign up

Export Citation Format

Share Document