scholarly journals The first report on entomopathogenic effect of Fusarium avenaceum (Fries) Saccardo (Hypocreales, Ascomycota) against rice weevil (Sitophilus oryzae L.: Curculionidae, Coleoptera)

2012 ◽  
Vol 44 (3) ◽  
pp. 11 ◽  
Author(s):  
Yacoub A. Batta

This study aimed to evaluate the entomopathogenic activity of <em>Fusarium avenaceum</em> (strain 10A) against adults of <em>Sitophilus oryzae </em>infesting wheat grain. Bioassays were carried out to determine the adult mortality of<em> S. oryzae</em> when the conidial suspension of the fungus strain was applied using three types of fungus treatment. Results obtained have indicated significant differences (P=0.05) in the mean percentage of adult mortality due to the treatment with the fungus compared to the control. The highest mean percentage of adult mortality was obtained by the direct spraying of <em>S. oryzae</em> adults with the fungus conidial suspension before introduction of the treated adults into pots containing wheat grain; the lowest mean percentage of adult mortality was obtained by spraying the inner surfaces of pots with the fungus conidial suspension before introducing the grain and insects. This study demonstrated the typical growth of <em>F. avenaceum</em> on the outer surfaces of the dead treated adults of <em>S. oryzae</em>. Presence of the external fungus growth on the dead insects indicated that the death of <em>S. oryzae</em> adults was attributed to the fungus infection. Results obtained in the present paper represent the first record of efficacy of <em>F. avenaceum</em> against a coleopteran stored-grain insect, mainly including <em>S. oryzae</em>.

2018 ◽  
Vol 33 (2) ◽  
pp. 127-135 ◽  
Author(s):  
Marijana Prazic-Golic ◽  
Petar Kljajic ◽  
Goran Andric ◽  
Nenad Tamas ◽  
Stefan Prazic

Residual efficacy of the insecticide deltamethrin, an EC formulation containing 25 g/L AI + 225 g/L PBO (piperonyl butoxide synergist), against lab populations of Sitophilus oryzae, Rhyzopertha dominica, Tribolium castaneum and Sitotroga cerealella was investigated in the laboratory by applying product water solutions (0.25 mg AI/kg) to wheat grain (at 25?1?C and 60?5% r.h.). Adult mortality on 0, 7, 14 and 30 days old deposits was estimated after 2, 7 and 14 days of exposure to treated wheat grain and additional 7 days of recovery. Progeny reduction (PR, %) was also assessed. After 2 days of exposure to deposits of all ages, deltamethrin caused only 0-10% mortality of coleopterans (up to 37% after the recovery period) and 23-30% of S. cerealella, while mortality before and after recovery from 14 days of exposure was 95-50% for S. oryzae, 97-100% for R. dominica, 99-100% for T. castaneum and 100% for S. cerealella. Progeny production of S. oryzae was highest after parents contacted with 14 days old deposit of deltamethrin (PR, 76%), and lowest after contact with fresh deposit (PR, 95%), while R. dominica and T. castaneum had no progeny on any deltamethrin deposit age in wheat (PR, 100%), and S. cerealella had only a very low progeny (PR, 99%). The results showed that the synergised deltamethrin, applied at 0.25 mg/kg in wheat grain, is a highly effective insecticide for storedproduct insect control, while a higher dose is required for successful residual control of S. oryzae.


2007 ◽  
Vol 70 (7) ◽  
pp. 1627-1632 ◽  
Author(s):  
NICKOLAS G. KAVALLIERATOS ◽  
CHRISTOS G. ATHANASSIOU ◽  
CONSTANTIN J. SAITANIS ◽  
DEMETRIUS C. KONTODIMAS ◽  
ALEXANDER N. ROUSSOS ◽  
...  

The insecticidal effect of two azadirachtin-based insecticides, NeemAzal-T/S and Oikos 32 EC, was examined against adults of the grain beetles Sitophilus oryzae and Tribolium confusum on wheat and maize under different temperature and humidity regimes. The insecticides were applied at three dosages, equivalent to 50, 100, and 200 mg of active ingredient per kg of grain. Adults of the above species were exposed to the treated grains at 20, 25, and 30°C and two relative humidity levels (55 and 75%), and mortality was assessed after 14 days of exposure. All adults were then removed, and the treated substrate remained under the same conditions for 45 more days. After this period, the grains were checked for progeny production. In both species and both commodities, mortality increased with insecticide dosage. For many dosage-formulation combinations, mortality increased with temperature at 55% relative humidity but the reverse was observed at 75% relative humidity. Comparing the two formulations, NeemAzal-T/S was more effective than Oikos 32 EC at all the combinations tested. NeemAzal-T/S was more effective at high relative humidity, but the efficacy of Oikos 32 EC was not much affected by the relative humidity. Survival was high, even at the higher dosages, in some of the temperature-humidity combinations. Progeny production of S. oryzae in the treated grains was considerably higher than that of T. confusum. The results of the present study indicate that further dosage increases and longer exposure times are needed to obtain a complete (100%) adult mortality in all combinations tested. However, the feasibility of using higher azadirachtin dosages (&gt;200 mg/kg grain) is questionable for cost reasons. Consequently, the use of these substances is not comparable to the use of traditional grain protectants, which are usually used at dosages of &lt;5 mg/kg grain. Although azadirachtin-based insecticides can be used with success for protection of stored grain, our study demonstrated that under certain circumstances such an application may not be effective. Abiotic factors (formulation, temperature, and relative humidity) had a more serious impact on the efficacy of these insecticides than did biotic factors (target species and commodity).


1977 ◽  
Vol 25 (2) ◽  
pp. 201 ◽  
Author(s):  
TG Amos ◽  
P Williams

The effects of two insect growth regulators on the productivity of Rhyzopertha dominica, Sitophilus oryzae and S. granarius were studied by exposing insects to wheat treated with methoprene (isopropyl 11-methoxy-3,7,11-trimethyldodeca-2,4-dienoate) or hydroprene (ethyl 3,7,11-trimethyldodeca-2,4-dienoate) at concentrations of 1, 5, 10 and 20 ppm. Parental adult mortality was generally higher on wheat treated with methoprene than with hydroprene, and this effect was usually enhanced under unventilated conditions. The productivity of the three species was markedly reduced, in some instances suppressed, under unventilated conditions, whereas only R. dominica productivity was depressed under ventilated conditions. When progeny were produced, their productivity was, in general, lower than normal.


2017 ◽  
Vol 37 (04) ◽  
pp. 243-258 ◽  
Author(s):  
Charles Adarkwah ◽  
Daniel Obeng-Ofori ◽  
Vanessa Hörmann ◽  
Christian Ulrichs ◽  
Matthias Schöller

Abstract Food losses caused by insects during postharvest storage are of paramount economic importance worldwide, especially in Africa. Laboratory bioassays were conducted in stored grains to determine the toxicity of powders of Eugenia aromatica and Moringa oleifera alone or combined with enhanced diatomaceous earth (Probe-A® DE, 89.0% SiO2 and 5% silica aerogel) to adult Sitophilus granarius, Tribolium castaneum and Acanthoscelides obtectus. Adult mortality was observed up to 7 days, while progeny production was recorded at 6–10 weeks. LD50 and LT50 values for adult test insects exposed to plant powders and DE, showed that A. obtectus was the most susceptible towards the botanicals (LD50 0.179% and 0.088% wt/wt for E. aromatica and M. oleifera, respectively), followed by S. granarius. Tribolium castaneum was most tolerant (LD50 1.42% wt/wt and 1.40% wt/wt for E. aromatica and M. oleifera, respectively). The combined mixture of plant powders and DE controlled the beetles faster compared to the plant powders alone. LT50 ranged from 55.7 h to 62.5 h for T. castaneum exposed to 1.0% M. oleifera and 1.0% DE, and 0.5% E. aromatica and 1.0% DE, respectively. Botanicals caused significant reduction of F1 adults compared to the control. Combined action of botanical insecticides with DE as a grain protectant in an integrated pest management approach is discussed.


Plant Disease ◽  
2003 ◽  
Vol 87 (1) ◽  
pp. 101-101 ◽  
Author(s):  
K. A. Jones ◽  
M. B. Rayamajhi ◽  
P. D. Pratt ◽  
T. K. Van

Lygodium microphyllum (Cav.) R.Br. (Old World climbing fern) and L. japonicum (Thunb.) Sw. (Japanese climbing fern), in the family Schizaeaceae, are among the most invasive weeds in Florida (1). L. microphyllum invades fresh water and moist habitats in south Florida, while L. japonicum has spread in relatively well-drained habitats from Texas to North Carolina and central Florida. Some potted plants of both Lygodium spp. grown in shadehouse as well as in full sunlight developed discolored spots on pinnules (foliage), which coalesced and resulted in browning and dieback of severely infected vines. Symptomatic foliage obtained from these plants was surface-sterilized by immersing in a 15% solution of commercial bleach for 90 s, followed by a series of four rinses with sterile deionized distilled water. Disks (4 mm in diameter) of pinnules were cut from the junction of discolored and healthy tissues and placed on potato dextrose agar (PDA). A fungus, Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. was consistently isolated from these disks. Fungal colonies produced abundant conidia on PDA. Conidia were hyaline, straight, cylindrical, averaging 14.7 μm (range 12.5 to 17.5 μm) × 5.0 μm (range 3.8 to 7.5 μm), and similar to those described for C. gloeosporioides (2). To confirm the pathogenicity of C. gloeosporioides on L. microphyllum and L. japonicum, Koch's postulates were performed. A fungal isolate was grown on PDA for 3 weeks, after which 10 ml of sterile deionized distilled water was added to the culture and agitated to dislodge conidia. The conidial suspension was strained through three layers of cheesecloth to remove hyphal fragments, and its concentration was adjusted to 1.7 × 106 conidia/ml. Foliage of healthy L. microphyllum and L. japonicum plants grown in 500-ml containers was sprayed with the conidial suspension until runoff. Plants were covered with plastic bags whose inner sides were misted with water to maintain high humidity and placed in a growth chamber under 12 h of fluorescent light per day. Temperature and relative humidity in the chamber ranged from 26 to 29°C and 44 to 73%, respectively. Plastic bags were removed after 3 days, and plants were further incubated for 3 weeks in the same growth chamber. Control plants were sprayed with sterile water, covered with plastic bags, and exposed to the same temperature, light, and humidity regime as those of the fungus-inoculated plants. Small, discolored foliar spots appeared 3 days after fungus inoculation. These spots were similar to those observed on pinnules of potted plants that originated from shadehouse and outdoor environments. Within 3 weeks after inoculation, the foliage of L. japonicum developed abundant discolored spots that led to edge browning and wilting of the pinnules. L. microphyllum had similar but more severe symptoms, with plants suffering as much as 50% dieback. C. gloeosporioides was consistently reisolated from the symptomatic tissues of both fern species. No symptoms appeared on the water-inoculated plants. To our knowledge, this is the first record of C. gloeosporioides pathogenicity on L. microphyllum and L. japonicum. References: (1) R. W. Pemberton and A. P. Ferriter. Am. Fern J. 88:165, 1998. (2) B. C. Sutton. Colletotrichum: Biology, Pathology and Control. CAB International, Wallingford, Oxon, UK, 1992.


Plant Disease ◽  
2014 ◽  
Vol 98 (6) ◽  
pp. 854-854 ◽  
Author(s):  
B.-J. Li ◽  
H.-Y. Ben ◽  
Y.-X. Shi ◽  
X.-W. Xie ◽  
A.-L. Chai

Zantedeschia aethiopica (L.) Spreng. (calla lily), belonging to family Araceae, is a popular ornamental plant in China. In the summer of 2010, leaves of calla lily with typical symptoms of necrotic lesions were observed in a commercial glasshouse in Beijing, China (116°20′ E, 39°44′ N). The initial symptoms were circular to subcircular, 1 to 3 mm, and dark brown lesions on the leaf lamina. Under high humidity, lesions expanded rapidly to 5 to 10 mm with distinct concentric zones and produced black sporodochia, especially on the backs of leaves. Later, the infected leaves were developing a combination of leaf lesions, yellowing, and falling off; as a result, the aesthetic value of the plant was significantly impacted. Leaf samples were used in pathogen isolation. Symptomatic leaf tissues were cut into small pieces and surface sterilized with 70% ethanol for 30 s and then in 0.1% mercuric chloride solution for 1 to 3 min. After being washed in sterile distilled water three times, the pieces were plated on potato dextrose agar (PDA) and incubated at 25°C in darkness for 7 days (5). Initial colonies of isolates were white, floccose mycelium and developed dark green to black concentric rings that were sporodochia bearing viscid spore masses after incubating 5 days. Conidiophores branched repeatedly. Conidiogenous cells were hyaline, clavate, and 10.0 to 16.0 × 1.4 to 2.0 μm. Conidia were hyaline, cylindrical, both rounded ends, and 6.0 to 8.2 × 1.9 to 2.4 μm. Morphological characteristics of the fungus were consistent with the description of Myrothecium roridum Tode ex Fr. (3,4). To confirm the pathogenicity, three healthy plants of calla lily were inoculated with a conidial suspension (1 × 106 conidia per ml) brushed from a 7-day-old culture of the fungus. Control plants were sprayed with sterile water. The inoculated plants were individual with clear plastic bags and placed in a glass cabinet at 25°C. After 7 days, all inoculated leaves developed symptoms similar to the original samples, but control plants remained disease free. Re-isolation and identification confirmed Koch's postulates. For molecular identification, genomic DNA of a representative isolate (MTL07081001) was extracted by modified CTAB method (1), and the rDNA-ITS region was amplified by using primers ITS1 (5-TCCGTAGGTGAACCTGCGG-3) and ITS4 (5-TCCTCCGCTTATTGATATGC-3). The 465-bp amplicon (GenBank Accession No. KF761293) was 100% identity to the sequence of M. roridum (JF724158.1) from GenBank. M. roridum has an extensive host range, covering 294 host plants (2). To our knowledge, this is the first record of leaf spot caused by M. roridum on calla lily in China. References: (1) F. M. Ausubel et al. Current Protocols in Molecular Biology. John Wiley & Sons Inc, New York, 1994. (2) D. F. Farr and A. Y. Rossman, Fungal Databases. Syst. Mycol. Microbiol. Lab., ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , October 2013. (3) M. T. Mmbaga et al. Plant Dis. 94:1266, 2010. (4) Y. X. Zhang et al. Plant Dis. 95:1030, 2011. (5) L. Zhu et al. J. Phytopathol. 161:59, 2013.


2012 ◽  
Vol 21 (2) ◽  
pp. 163-168 ◽  
Author(s):  
Humayun Reza Khan ◽  
Polash Kanti Halder

The susceptibility of six varieties of rice, Oryza sativa, viz. Lata, Minicate, Nazersail, Parija, Kalijira and Kataribhog, to the infestation of the rice weevil, Sitophilus oryzae (L.), was studied on the basis of population build up under an ambient condition (28 ± 4ºC and 70 ± 4 % RH) of the laboratory. The mean weights of each grain of the above six rice varieties were 16.9, 16.1, 11.43, 13.87, 6.23 and 9.77 mg, respectively; mean lengths were 6.47, 6.56, 5.37, 5.38, 4.22 and 4.92 mm, respectively; mean widths were 2.45, 2.03, 2.05, 2.17, 1.6 and 1.9 mm, respectively; and moisture contents were 11.55, 10.75, 11.6, 12.71, 11.85, and 12.1 per cents, respectively. As far as the number of emerging adults is concerned, the weevil showed the highest number (695) in Nazersail on the 16th week, Lata (755) on the 18th week, Minicate (654) on the 16th week, Parija (482) on the 20th week, Kalijira (402) on the 20th week, and Kataribhog (456) on the 20th week. The mean numbers of the adult weevils in the above six varieties after 22 weeks of rearing were 425, 410, 351, 387, 357 and 400, respectively and was statistically significant at 5% level. The degree of susceptibility of the rice varieties to the rice weevils from the highest to lowest susceptibility was ? Lata > Nazersail > Minicate > Pariza > Kataribhog > Kalijira.DOI: http://dx.doi.org/10.3329/dujbs.v21i2.11514 Dhaka Univ. J. Biol. Sci. 21(2): 163-168, 2012 (July)


2014 ◽  
Vol 77 (1) ◽  
pp. 87-93 ◽  
Author(s):  
NICKOLAS G. KAVALLIERATOS ◽  
CHRISTOS G. ATHANASSIOU ◽  
MARIA M. AOUNTALA ◽  
DEMETRIUS C. KONTODIMAS

The entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, and Isaria fumosorosea were tested against the stored-grain pest Sitophilus oryzae. The fungi were isolated from the soil (from three locations in Attica, Greece: B. bassiana from Tatoion, M. anisopliae from Marathon, and I. fumosorosea from Aghios Stefanos) using larvae of Galleria mellonella as bait. Suspensions of 2.11 × 107 and 2.11 × 108, 1.77 × 107 and 1.77 × 108, and 1.81 × 107 and 1.81 × 108 conidia per ml of B. bassiana, M. anisopliae, and I. fumosorosea, respectively, were applied by three treatments: (i) sprayed on food and set in petri dishes with adults of S. oryzae, (ii) sprayed on adults of S. oryzae and set in petri dishes without food, and (iii) sprayed on adults of S. oryzae and set in petri dishes with food. The observed mortality of S. oryzae adults during the overall exposure period for the lowest, as well as for the highest, concentrations of B. bassiana, M. anisopliae, and I. fumosorosea ranged from 0 to 100%. Concentration was, in most of the cases tested, a critical parameter that determined the “speed of kill” of the exposed insect species for B. bassiana and M. anisopliae. Conversely, concentration was not that critical for I. fumosorosea, and survival was high in some of the combinations tested, even after 14 days of exposure. Both in the highest and the lowest concentrations of fungi, the mortality of S. oryzae adults was higher when the fungi were applied on adults than when they were applied on food. Higher mortality was observed when food was absent than when food was present, in most of the cases tested. The high efficacy levels recorded in the current study indicate that the tested fungi could be effective biocontrol agents against S. oryzae.


2014 ◽  
Vol 40 (4) ◽  
pp. 307-312 ◽  
Author(s):  
Ana Raquel Soares-Colletti ◽  
Silvia de Afonseca Lourenço

The development of a large number of postharvest diseases is closely associated with fruit ripeness. Environmental conditions may affect both the pathogen development and the fruit ripening rate. The aim of this study was to determine the most favorable temperature and wetness duration to the development of anthracnose in guava fruits. Cultivars 'Kumagai' (white pulp) and 'Pedro Sato' (red pulp) were inoculated with a conidial suspension of Colletotrichum gloeosporioides and C. acutatum and incubated at constant temperature ranging from 10 to 35ºC and wetness duration of 6 and 24 hours. Disease severity and incidence were evaluated at every two days during 12 days. No infection occurred at 10 and 35ºC, regardless of the wetness duration. The optimum conditions for fruit infection were 26 and 27ºC for 'Kumagai' and 25 and 26ºC for 'Pedro Sato', adopting 24 hours of wetness. In general, the disease development in 'Kumagai' cultivar was more affected by the wetness period, compared to 'Pedro Sato'. Disease severity for 'Kumagai' fruits was maximal between 25 and 30ºC , depending on the Colletotrichum species. Regarding 'Pedro Sato', the mean diameter of lesions was greater in fruits stored at 20, 25 and 30ºC , compared to 'Kumagai' cultivar, depending on the wetness period and the species. The incubation period (between 6 and 7 days) and the latent period (between 8 and 10 days) were minimal at 30ºC. The data generated in this study will be useful either for the development of a disease warning system or for the increase in the shelf life of guavas in the postharvest.


Sign in / Sign up

Export Citation Format

Share Document