scholarly journals Genetic variation analysis of superior cotton varieties of Gossypium hirsutum through microsatellite markers

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Dede Nuraida ◽  
Yusuf Abdurrajak ◽  
Moh Amin ◽  
Utami S. Hastutik

This study was conducted in order to obtain information on genetic variation in populations rated as superior cotton (<em>Gossypium</em> <em>hirsutum</em> L.) varieties in Balittas Malang, Indonesia. The samples used 10 varieties of cotton Kanesia series and 2 other superior varieties that are LRA 5166 and ISA 205A. Indicators of genetic diversity are the number of alleles per <em>locus</em>, allele frequencies, and heterozygosity values. DNA was isolated from the leaves of 3- week-old seedlings using the CTAB method. Amplification was performed using 5 SSRs primer pairs of the JESPR series. The results showed five microsatellite <em>loci</em>, yielding 12 alleles with a size range of 80–500 bp, with an average number of alleles per <em>locus</em> of 4.60. The average values of heterozygosity of the five loci was high, at 0.71. Based on the number of alleles, allele frequencies and heterozygosity values, the genetic variation sampled in the superior cotton varieties studied here is quite high.

2006 ◽  
Vol 1 (3) ◽  
pp. 1934578X0600100
Author(s):  
Sanjog T. Thul ◽  
Ajit K. Shasany ◽  
Mahendra P. Darokar ◽  
Suman P. S. Khanuja

Intra- and inter-specific genetic variation analysis was conducted using amplified fragment length polymorphism (AFLP) profiling in Capsicum accessions in the germplasms collected from different geographical locations in India. A total of 24 accessions were investigated belonging to six species, namely C. annuum, C. baccatum, C. chinence, C. eximium, C. frutescens and C. luteum. Average similarity within the 15 accessions of C. annuum was highest (100%) between accessions CIMAP/CA45 and CIMAP/CA49 obtained from IISR, Kerala and 43% among the species CIMAP/CC1 and CIMAP/CB2. In this analysis, accessions were clustered more pronouncedly according to their geographical locations than to their taxonomic labels. A great degree of intermixing of present day domesticated chillies is evident from the present study.


Parasitology ◽  
2002 ◽  
Vol 125 (7) ◽  
pp. S51-S59 ◽  
Author(s):  
J. CURTIS ◽  
R. E. SORENSEN ◽  
D. J. MINCHELLA

Blood flukes in the genus Schistosoma are important human parasites in tropical regions. A substantial amount of genetic diversity has been described in populations of these parasites using molecular markers. We first consider the extent of genetic variation found in Schistosoma mansoni and some factors that may be contributing to this variation. Recently, though, attempts have been made to analyze not only the genetic diversity but how that diversity is partitioned within natural populations of schistosomes. Studies with non-allelic molecular markers (e.g. RAPDs and mtVNTRs) have indicated that schistosome populations exhibit varying levels of gene flow among component subpopulations. The recent characterization of microsatellite markers for S. mansoni provided an opportunity to study schistosome population structure within a population of schistosomes from a single Brazilian village using allelic markers. Whereas the detection of population structure depends strongly on the type of analysis with a mitochondrial marker, analyses with a set of seven microsatellite loci consistently revealed moderate genetic differentiation when village boroughs were used to define parasite subpopulations and greater subdivision when human hosts defined subpopulations. Finally, we discuss the implications that such strong population structure might have on schistosome epidemiology.


Genome ◽  
1999 ◽  
Vol 42 (3) ◽  
pp. 420-431 ◽  
Author(s):  
Gen-Lou Sun ◽  
Oscar Díaz ◽  
Björn Salomon ◽  
Roland von Bothmer

Genetic diversity of 33 Elymus caninus accessions was investigated using isozyme, RAPD, and microsatellite markers. The three assays differed in the amount of polymorphism detected. Microsatellites detected the highest polymorphism. Six microsatellite primer pairs generated a total of 74 polymorphic bands (alleles), with an average of 15.7 bands per primer pair. Three genetic similarity matrices were estimated based on band presence or absence. Genetic diversity trees (dendrograms) were derived from each marker technique, and compared using Mantel's test. The correlation coefficients were 0.204, 0.267, and 0.164 between isozyme and RAPD distance matrices, RAPD and microsatellite distance matrices, and between isozyme and microsatellite distance matrices, respectively. The three methodologies gave differing views of the amount of variation present but all showed a high level of genetic variation in E. caninus. The following points may be drawn from this study whether based on RAPD, microsatellite, or isozyme data: (i) The Icelandic populations are consistently revealed by the three dendrograms. The congruence of the discrimination of this accession group by RAPD, microsatellite, and isozyme markers suggests that geographic isolation strongly influenced the evolution of the populations; (ii) The degree of genetic variation within accessions was notably great; and (iii) The DNA-based markers will be the more useful ones in detecting genetic diversity in closely related accessions. In addition, a dendrogram, which took into account all fragments produced by isozymes, RAPDs, and microsatellites, reflected better the relationships than did dendrograms based on only one type of marker.Key words: Elymus caninus, genetic diversity, isozymes, RAPDs, microsatellites.


Author(s):  
May Sandar Kyaing ◽  
Sein Sandar May Phyo

This study was conducted to explore the genetic diversity and relationship of Sein Ta Lone mango cultivars among 20 commercial orchards in Sintgaing Township, Mandalay region. Nine microsatellite (SSR) markers were used to detect genetic polymorphism in a range from (3 to 6) alleles with (4.33) alleles per marker in average. Six out of nine microsatellite markers gave the PIC values of greater than (0.5). Among them, SSR36 held the highest PIC values of (0.691) while MiSHRS39 and MN85 possessed the least PIC values of (0.368) and (0.387) respectively. The genetic diversity was expressed as unbiased expected heterozygosity (UHe) value with an average of (0.561). The genetic relationship was revealed by (UPGMA) dendrogram in a range of (0.69 to 1.00). Based on UPGMA cluster analysis, three main clusters were classified among three different locations. This study was intended to help cultivar characterization and conservation for proper germplasm management with the estimation of genetic variation and relationship in the existing population of Sein Ta Lone mangoes in Sintgaing Township by microsatellite markers.  


2004 ◽  
Vol 52 (3) ◽  
pp. 259-265
Author(s):  
Daniela Šátková-Jakabová ◽  
J. Trandžík ◽  
Ľudmila Hudecová-Kvasňáková ◽  
Erika Hegedüšová-Zetochová ◽  
A. Bugarský ◽  
...  

Genetic variation at six microsatellite loci was analysed for five Thoroughbred subpopulations to determine the magnitude of genetic differentiation and the genetic relationships among the subpopulations. Significant deviations from Hardy-Weinberg equilibrium were shown for a number of locus-population combinations, with all subpopulations. The genetic diversities and relationships of five Thoroughbred subpopulations were evaluated using six microsatellites recommended by the International Society of Animal Genetics (ISAG). The allele frequencies, the effective numbers of alleles, and the observed and expected heterozygosities were calculated. POPGENE v. 1.31 (Yeh et al., 1997) was used to test for deviations from the Hardy-Weinberg (H-W) equilibrium and to assign FIS estimates (Weir, 1990). The utility of microsatellites for evaluating genetic diversity of horses is discussed.


2020 ◽  
Vol 50 (2) ◽  
pp. 318-324
Author(s):  
A. Maqhashu ◽  
N.O. Mapholi ◽  
H.A. O’Neill ◽  
K.A. Nephawe ◽  
F.V. Ramukhithi ◽  
...  

This study was conducted to assess genetic variation in Bapedi sheep using 14 microsatellite markers. Blood samples were collected from 174 unrelated Bapedi sheep on six farms in various districts of Limpopo and from the Agricultural Research Council Animal Production Institute (ARC-API) in Gauteng. Genotypes from other South African indigenous sheep, namely Zulu (N = 14), Damara (N = 11), Dorper (N = 8), and Namaqua (N = 11), were included to represent reference populations. The effective number of alleles averaged 5.6 for across the Bapedi flocks and was 4.9 for the reference breeds. Among the Bapedi flocks, the observed heterozygosity (Ho) ranged from 0.56 ± 0.05 to 0.69 ± 0.03 and expected heterozygosity (He) values were between 0.75 ± 0.04 and 0.88 ± 0.01. Thus, there is considerable genetic diversity within the Bapedi sheep populations. However, the fixation index was high, indicating the possibility of inbreeding becoming a problem for these flocks. A neighbour-joining tree was constructed from the estimates of Nei’s genetic distances among flocks. The presence of Bapedi sheep flocks on all of the main branches of the tree along with one of the reference breeds suggests the present-day Bapedi is not an entirely distinct breed and that there are genetic differences between flocks of these South African indigenous sheep. Sustainable breeding and conservation programmes are needed to control inbreeding and to foreclose possible genetic dilution of Bapedi sheep. Keywords: genetic diversity, germplasm conservation, inbreeding, indigenous sheep


Sign in / Sign up

Export Citation Format

Share Document