scholarly journals NCAA Football Off-Season Training: Unanswered Prayers… A Prayer Answered

2017 ◽  
Vol 52 (2) ◽  
pp. 145-148 ◽  
Author(s):  
Scott Anderson

Off-season training in year-round collegiate football is purported to be performance enhancing. Absent principles of exercise physiology, excesses in sport-training regimens pose risk to the participant athletes. Since 2000, 33 National Collegiate Athletic Association (NCAA) football players have died in sport: 27 nontraumatic deaths and 6 traumatic deaths, a ratio of 4.5 nontraumatic deaths for every traumatic death. On average, 2 NCAA football players die per season. Best practices, consensus guidelines, and precautions are ignored, elevating the risk. However, standards exist that will, if heeded, prevent nontraumatic death in athletes training for sport. Sickle cell trait status knowledge and tailored precautions are preventing deaths from exertional collapse associated with sickle cell trait. Adherence to established principles of exercise physiology and best-practice training standards, which is long overdue, will help to prevent not only deaths from exertional collapse associated with sickle cell trait but also sudden cardiac, exertional heat stroke, and asthma deaths.

2020 ◽  
Vol 8 (8) ◽  
pp. 232596712094249 ◽  
Author(s):  
Barry P. Boden ◽  
Ken M. Fine ◽  
Ilan Breit ◽  
Wendee Lentz ◽  
Scott A. Anderson

Background: Football has the highest number of nontraumatic fatalities of any sport in the United States. Purpose: To compare the incidence of nontraumatic fatalities with that of traumatic fatalities, describe the epidemiology of nontraumatic fatalities in high school (HS) and college football players, and determine the effectiveness of National Collegiate Athletic Association (NCAA) policies to reduce exertional heat stroke (EHS) and exertional sickling (ES) with sickle cell trait (SCT) fatalities in athletes. Study Design: Descriptive epidemiology study. Methods: We retrospectively reviewed 20 academic years (1998-2018) of HS and college nontraumatic fatalities in football players using the National Registry of Catastrophic Sports Injuries (NRCSI). EHS and ES with SCT fatality rates were compared before and after the implementation of the NCAA football out-of-season model (bylaw 17.10.2.4 [2003]) and NCAA Division I SCT screening (bylaw 17.1.5.1 [2010]), respectively. Additionally, we compiled incidence trends for HS and college traumatic and nontraumatic fatalities in football players for the years 1960 through 2018 based on NRCSI data and previously published reports. Results: The risk (odds ratio) of traumatic fatalities in football players in the 2010s was 0.19 (95% CI, 0.13-0.26; P < .0001) lower in HS and 0.29 (95% CI, 0.29-0.72; P = .0078) lower in college compared with that in the 1960s. In contrast, the risk of nontraumatic fatalities in football players in the 2010s was 0.7 (95% CI, 0.50-0.98; P = .0353) in HS and 0.9 (95% CI, 0.46-1.72; P = .7413) in college compared with that in the 1960s. Since 2000, the risk of nontraumatic fatalities has been 1.89 (95% CI, 1.42-2.51; P < .001) and 4.22 (95% CI, 2.04-8.73; P < .001) higher than the risk of traumatic fatalities at the HS and college levels, respectively. During the 20 years studied, there were 187 nontraumatic fatalities (average, 9.4 per year). The causes of death were sudden cardiac arrest (57.7%), EHS (23.6%), ES with SCT (12.1%), asthma (4.9%), and hyponatremia (1.6%). The risk of a nontraumatic fatality was 4.1 (95% CI, 2.8-5.9; P < .0001) higher in NCAA compared with HS athletes. There was no difference in the risk of an EHS fatality in NCAA athletes (0.86 [95% CI, 0.17-4.25]; P = .85) after implementation in 2003 of the NCAA football out-of-season model. The risk of an ES with SCT fatality in Division I athletes was significantly lower after the 2010 NCAA SCT screening bylaw was implemented (0.12 [95% CI, 0.02-0.95]; P = .04). Conclusion: Since the 1960s, the risk of nontraumatic fatalities has declined minimally compared with the reduction in the risk of traumatic fatalities. Current HS and college nontraumatic fatality rates are significantly higher than rates of traumatic fatalities. The 2003 NCAA out-of-season model has failed to significantly reduce EHS fatalities. The 2010 NCAA SCT screening bylaw has effectively prevented ES with SCT fatalities in NCAA Division I football.


2018 ◽  
Vol 50 (5S) ◽  
pp. 742
Author(s):  
Nathan P. Lemoine ◽  
Michael E. Owens ◽  
Haoyan Wang ◽  
Jack Marucci ◽  
Shelly Mullenix ◽  
...  

Author(s):  
Rebecca M. Hirschhorn ◽  
Jessica L. Phillips Gilbert ◽  
Danielle A. Cadet ◽  
Tenley E. Murphy ◽  
Clinton Haggard ◽  
...  

American football athletes are frequently hypohydrated before and during activity. Hypohydration increases the risk of exertional sickling in student-athletes with sickle cell trait (SCT). The authors examined weight charts from the 2010/2011 to 2018/2019 seasons at one Division I institution to determine if differences in percentage body mass losses (%BML) exist between those with and without SCT. Seventeen student-athletes with SCT and 17 matched-controls were included. A Bonferroni correction was applied to account for multiple comparisons (0.05/8), resulting in p < .006 considered significant. There was a significant difference for %BML between groups (SCT: 0.84 ± 0.65% vs. control: 1.21 ± 0.71%; p = .002) but not for the number of days %BML exceeded 2% (SCT: 0 ± 1 vs. control: 1 ± 1; p = .016). Implementation of proper hydration strategies minimized %BML in athletes with SCT, decreasing the risk of hypohydration and exertional sickling. The same strategies ensured all players remained below threshold to optimize performance and reduce heat illness risk.


2007 ◽  
Vol 16 (3) ◽  
pp. 197-203 ◽  
Author(s):  
E. Randy Eichner

Sickle cell trait can pose a grave risk for some athletes. In the past few years, exertional sickling has killed nine athletes, including five college football players in training. Exercise-physiology research shows how and why sickle red cells can accumulate in the bloodstream during intense exercise bouts. Sickle cells can “logjam” blood vessels and lead to collapse from ischemic rhabdomyolysis. Diverse clinical and metabolic problems from explosive rhabdomyolysis can threaten life. Sickling can begin in 2-3 minutes of any all-out exertion, or during sustained intense exertion – and can reach grave levels very soon thereafter if the athlete struggles on or is urged on by coaches despite warning signs. Heat, dehydration, altitude, and asthma can increase the risk for and worsen sickling. This exertional sickling syndrome, however, is unique and in the field can be distinguished from heat illnesses. Sickling collapse is a medical emergency. Fortunately, screening and precautions can prevent sickling collapse and enable sickle-trait athletes to thrive in their sports.


2019 ◽  
Vol 51 (Supplement) ◽  
pp. 324
Author(s):  
Matt Martone ◽  
Shelly Mullenix ◽  
Nathan Lemoine ◽  
Jack Marucci ◽  
Derek Calvert ◽  
...  

2012 ◽  
Vol 47 (3) ◽  
pp. 257-263 ◽  
Author(s):  
Jonathan M. Oliver ◽  
Brad S. Lambert ◽  
Steven E. Martin ◽  
John S. Green ◽  
Stephen F. Crouse

Context: The recent increase in athlete size, particularly in football athletes of all levels, coupled with the increased health risk associated with obesity warrants continued monitoring of body composition from a health perspective in this population. Equations developed to predict percentage of body fat (%Fat) have been shown to be population specific and might not be accurate for football athletes. Objective: To develop multiple regression equations using standard anthropometric measurements to estimate dual-energy x-ray absorptiometry %Fat (DEXA%Fat) in collegiate football players. Design: Controlled laboratory study. Patients and Other Participants: One hundred fifty-seven National Collegiate Athletic Association Division IA football athletes (age  =  20 ± 1 years, height  =  185.6 ± 6.5 cm, mass  =  103.1 ± 20.4 kg, DEXA%Fat  =  19.5 ± 9.1%) participated. Main Outcome Measure(s): Participants had the following measures: (1) body composition testing with dual-energy x-ray absorptiometry; (2) skinfold measurements in millimeters, including chest, triceps, subscapular, midaxillary, suprailiac, abdominal (SFAB), and thigh; and (3) standard circumference measurements in centimeters, including ankle, calf, thigh, hip (AHIP), waist, umbilical (AUMB), chest, wrist, forearm, arm, and neck. Regression analysis and fit statistics were used to determine the relationship between DEXA%Fat and each skinfold thickness, sum of all skinfold measures (SFSUM), and individual circumference measures. Results: Statistical analysis resulted in the development of 3 equations to predict DEXA%Fat: model 1, (0.178 • AHIP) + (0.097 • AUMB) + (0.089 • SFSUM) − 19.641; model 2, (0.193 • AHIP) + (0.133 • AUMB) + (0.371 • SFAB) − 23.0523; and model 3, (0.132 • SFSUM) + 3.530. The R2 values were 0.94 for model 1, 0.93 for model 2, and 0.91 for model 3 (for all, P &lt; .001). Conclusions: The equations developed provide an accurate way to assess DEXA%Fat in collegiate football players using standard anthropometric measures so athletic trainers and coaches can monitor these athletes at increased health risk due to increased size.


2010 ◽  
Vol 45 (2) ◽  
pp. 128-135 ◽  
Author(s):  
Sandra Fowkes Godek ◽  
Arthur R. Bartolozzi ◽  
Chris Peduzzi ◽  
Scott Heinerichs ◽  
Eugene Garvin ◽  
...  

Abstract Context: Considerable controversy regarding fluid replacement during exercise currently exists. Objective: To compare fluid turnover between National Football League (NFL) players who have constant fluid access and collegiate football players who replace fluids during water breaks in practices. Design: Observational study. Setting: Respective preseason training camps of 1 National Collegiate Athletic Association Division II (DII) football team and 1 NFL football team. Both morning and afternoon practices for DII players were 2.25 hours in length, and NFL players practiced for 2.25 hours in the morning and 1 hour in the afternoon. Environmental conditions did not differ. Patients or Other Participants: Eight NFL players (4 linemen, 4 backs) and 8 physically matched DII players (4 linemen, 4 backs) participated. Intervention(s): All players drank fluids only from their predetermined individual containers. The NFL players could consume both water and sports drinks, and the DII players could only consume water. Main Outcome Measure(s): We measured fluid consumption, sweat rate, total sweat loss, and percentage of sweat loss replaced. Sweat rate was calculated as change in mass adjusted for fluids consumed and urine produced. Results: Mean sweat rate was not different between NFL (2.1 ± 0.25 L/h) and DII (1.8 ± 0.15 L/h) players (F1,12  =  2, P  =  .18) but was different between linemen (2.3 ± 0.2 L/h) and backs (1.6 ± 0.2 L/h) (t14  =  3.14, P  =  .007). We found no differences between NFL and DII players in terms of percentage of weight loss (t7  =  −0.03, P  =  .98) or rate of fluid consumption (t7  =  −0.76, P  =  .47). Daily sweat loss was greater in DII (8.0 ± 2.0 L) than in NFL (6.4 ± 2.1 L) players (t7  =  −3, P  =  .02), and fluid consumed was also greater in DII (5.0 ± 1.5 L) than in NFL (4.0 ± 1.1 L) players (t7  =  −2.8, P  =  .026). We found a correlation between sweat loss and fluids consumed (r  =  0.79, P &lt; .001). Conclusions: During preseason practices, the DII players drinking water at water breaks replaced the same volume of fluid (66% of weight lost) as NFL players with constant access to both water and sports drinks.


Sign in / Sign up

Export Citation Format

Share Document