scholarly journals Mapping of complex structures: high resolution 3D renditions of vertical coral reefs

2017 ◽  
Author(s):  
K Robert ◽  
V A I Huvenne ◽  
D O B Jones ◽  
L Marsh ◽  
A Georgiopoulou
1989 ◽  
Vol 94 (4) ◽  
pp. 617-624
Author(s):  
S.J. Wright ◽  
J.S. Walker ◽  
H. Schatten ◽  
C. Simerly ◽  
J.J. McCarthy ◽  
...  

Applications of the tandem scanning confocal microscope (TSM) to fluorescence microscopy and its ability to resolve fluorescent biological structures are described. The TSM, in conjunction with a cooled charge-coupled device (cooled CCD) and conventional epifluorescence light source and filter sets, provided high-resolution, confocal data, so that different fluorescent cellular components were distinguished in three dimensions within the same cell. One of the unique features of the TSM is the ability to image fluorochromes excited by ultraviolet light (e.g. Hoechst, DAPI) in addition to fluorescein and rhodamine. Since the illumination is dim, photobleaching is insignificant and prolonged viewing of living specimens is possible. Series of optical sections taken in the Z-axis with the TSM were reproduced as stereo images and three-dimensional reconstructions. These data show that the TSM is potentially a powerful tool in fluorescence microscopy for determining three-dimensional relationships of complex structures within cells labeled with multiple fluorochromes.


Coral Reefs ◽  
2019 ◽  
Vol 38 (3) ◽  
pp. 467-488 ◽  
Author(s):  
Sam J. Purkis ◽  
Arthur C. R. Gleason ◽  
Charlotte R. Purkis ◽  
Alexandra C. Dempsey ◽  
Philip G. Renaud ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Oju Jeon ◽  
Yu Bin Lee ◽  
Sang Jin Lee ◽  
Nazilya Guliyeva ◽  
Joanna Lee ◽  
...  

Recently, 3D bioprinting has been explored as a promising technology for biomedical applications with the potential to create complex structures with precise features. Cell encapsulated hydrogels composed of materials such as gelatin, collagen, hyaluronic acid, alginate and polyethylene glycol have been widely used as bioinks for 3D bioprinting. However, since most hydrogel-based bioinks may not allow rapid stabilization immediately after 3D bioprinting, achieving high resolution and fidelity to the intended architecture is a common challenge in 3D bioprinting of hydrogels. In this study, we have utilized shear-thinning and self-healing ionically crosslinked oxidized and methacrylated alginates (OMAs) as a bioink, which can be rapidly gelled by its self-healing property after bioprinting and further stabilized via secondary crosslinking. It was successfully demonstrated that stem cell-laden calcium-crosslinked OMA hydrogels can be bioprinted into complicated 3D tissue structures with both high resolution and fidelity. Additional photocrosslinking enables long-term culture of 3D bioprinted constructs for formation of functional tissue by differentiation of encapsulated human mesenchymal stem cells.


2013 ◽  
Vol 375 ◽  
pp. 176-187 ◽  
Author(s):  
Mélanie Douarin ◽  
Mary Elliot ◽  
Stephen R. Noble ◽  
Daniel Sinclair ◽  
Lea-Anne Henry ◽  
...  

2016 ◽  
Vol 123 ◽  
pp. 80-88 ◽  
Author(s):  
Giada Bufarale ◽  
Lindsay B. Collins ◽  
Michael J. O’Leary ◽  
Alexandra Stevens ◽  
Moataz Kordi ◽  
...  

2021 ◽  
Vol 13 (19) ◽  
pp. 3814
Author(s):  
Fang Fang ◽  
Kaishun Wu ◽  
Yuanyuan Liu ◽  
Shengwen Li ◽  
Bo Wan ◽  
...  

Building instances extraction is an essential task for surveying and mapping. Challenges still exist in extracting building instances from high-resolution remote sensing imagery mainly because of complex structures, variety of scales, and interconnected buildings. This study proposes a coarse-to-fine contour optimization network to improve the performance of building instance extraction. Specifically, the network contains two special sub-networks: attention-based feature pyramid sub-network (AFPN) and coarse-to-fine contour sub-network. The former sub-network introduces channel attention into each layer of the original feature pyramid network (FPN) to improve the identification of small buildings, and the latter is designed to accurately extract building contours via two cascaded contour optimization learning. Furthermore, the whole network is jointly optimized by multiple losses, that is, a contour loss, a classification loss, a box regression loss and a general mask loss. Experimental results on three challenging building extraction datasets demonstrated that the proposed method outperformed the state-of-the-art methods’ accuracy and quality of building contours.


Sign in / Sign up

Export Citation Format

Share Document