scholarly journals Controls on the distribution, style, composition and timing of the gold-bearing mineralized zones of the Horne 5 deposit, Abitibi Greenstone Belt, Quebec

2018 ◽  
Author(s):  
A Krushnisky ◽  
P Mercier-Langevin ◽  
P -S Ross ◽  
J Goutier ◽  
V J McNicoll ◽  
...  
1979 ◽  
Vol 16 (3) ◽  
pp. 421-439 ◽  
Author(s):  
B. J. Fryer ◽  
R. Kerrich ◽  
R. W. Hutchinson ◽  
M. G. Peirce ◽  
D. S. Rogers

The Porcupine District, Abitibi Greenstone Belt is one of the most extensive areas of Archaean auriferous mineralization. At least two stages of lode gold emplacement may be recognized. The first involves gold-bearing ferroan dolomite layers with subordinate chert, sulphides, and graphite deposited as laterally extensive chemical sediments at interflow horizons within the mafic volcanic sequence. The second stage is represented by major gold-bearing hydrothermal quartz–albite–dravite veins which transect diverse host rocks including the carbonate chemical sediments. Differences between gold-bearing chemical sediment and auriferous hydrothermal veins, in terms of texture, mineralogy, and nature of inclusions, together with considerations of chemistry are not compatible with local derivation of veins from enveloping chemical sediments or adjacent host rocks. The chemical sediments display slump structures and predate all tectonic deformation. In general, auriferous hydrothermal quartz veins transect bedding and/or schistosity, and are at a low state of internal strain. They appear to have been emplaced late during the second regional fold episode.Au, Ag, and Pd average 10, 2, and 0.1 ppm respectively in ore types at the Dome mine; representing concentration factors of 10 000,40, and 10 times background values in unmineralized metabasalt, and primary igneous rocks worldwide. Au and Ag are inhomogeneously distributed.Mineralized metabasic rocks adjacent to vein stockworks have Ti/Zr and Ti/Al2O3 ratios comparable to tholeiitic basalts, but display variable enrichment or depletion of silica, systematic depletion in Na2O, and where intensely altered significant extraction of calcium. The low Ni and Cr contents of the carbonate layers, together with low Ti/Zr ratios (43–78) of the carbonates and their enveloping mafic schists, are not consistent with the hypothesis that these auriferous rocks are carbonated ultramafics. Massive banded quartz–fuchsite–dravite veins have Cr and Ni abundances averaging 350 ppm, implying hydrothermal transport of these elements. Ti/Zr ratios of 120, together with high Mg, Cr, and Ni abundances in magnesite–dolomite–quartz– chlorite schists which host the banded veins are compatible with a primary komatiitic composition. Mineralized metabasic rocks are reduced (Fe2+/ΣFe = 0.9) relative to rocks with primary background abundances of precious metals (Fe2+/ΣFe = 0.7). This change of oxidation state implies that large volumes of reducing hydrothermal solutions were involved in vein mineralization.


1979 ◽  
Vol 16 (3) ◽  
pp. 440-458 ◽  
Author(s):  
R. Kerrich ◽  
B. J. Fryer

The Porcupine District, Abitibi Greenstone Belt, is one of the most extensive areas of Archaean auriferous mineralisation. At least two stages of lode-gold emplacement are recognised: the first stage involves gold-bearing carbonate–chert chemical sediments within the lower mafic volcanic sequence; the second stage is represented by auriferous hydrothermal quartz veins which postdate deformation of the greenstone assemblage and transect diverse host rocks.Rare-earth element (REE) concentrations in the stratiform carbonates are typical of the distinctive patterns recorded for Archaean chemical sediments. Chert in these rocks has a δ18O value averaging 17.1‰, implying exchange from heavier 18/16 ratios during diagenesis and metamorphism. Metabasic volcanic rocks and quartz–feldspar porphyry stocks with background gold abundances have mean whole-rock δ18O values of 9.1‰ and 10.7‰ respectively. This enrichment in 18O relative to primary igneous rocks is attributed to oxygen isotope exchange with seawater at low temperatures during fluid transport through the oceanic crust.Quartz in all of the five hydrothermal vein systems present has a δ18O of 14‰ to 15‰, and quartz-muscovite fractionations are 3.4‰ to 3.8‰. Ambient temperatures of mineralisation are estimated to have been 400 °C to 450 °C, from oxygen isotope thermometers, fluid inclusion filling temperatures, and metamorphic mineral assemblages. The calculated δ18O of the mineralising solutions is~10‰, implying fluids of metamorphic origin. REE patterns in hydrothermal quartz veins suggest that they have been derived from high-temperature solutions in equilibrium with source rocks having relatively flat (chondrite normalised) REE distributions, such as tholeiitic and komatiitic volcanics. Adjacent to hydrothermal veins, quartz in igneous rocks approaches isotopic equilibrium with vein quartz, at 15‰, and whole-rock δ18O values for metabasalts shift to ~11‰, implying extensive water-rock interaction. Strong depletions in heavy REE of metabasic schists adjacent to veins provides further evidence for pervasive hydrothermal alteration. The Eu enrichment of all lode gold deposits analysed at Dome Mine is consistent with the reduced state of the solutions involved in their deposition, as recorded by the predominance of Fe2+. The gold-bearing veins are believed to have formed by focussed flow of fluids outgassed at the greenschist–amphibolite transition. Source volumes for Au in the Porcupine District exceed 600 km3, the carrier fluid volume for mineralisation was 60–90 km3, the Au solute concentration in the low nanogram mL−1 range, and transport distances were of the order of 10 km. Such veins may be the precursors of precious-metal-bearing chemical sediments if fluids debouche into the hydrosphere.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 261
Author(s):  
Lucie Mathieu

In gold-endowed greenstone belts, ore bodies generally correspond to orogenic gold systems (OGS) formed during the main deformation stage that led to craton stabilization (syntectonic period). Most OGS deposits postdate and locally overprint magmatic-hydrothermal systems, such as Au-Cu porphyry that mostly formed during the main magmatic stage (synvolcanic period) and polymetallic intrusion-related gold systems (IRGS) of the syntectonic period. Porphyries are associated with tonalite-dominated and sanukitoid plutons, whereas most IRGS are related to alkaline magmatism. As reviewed here, most intrusion-associated mineralization in the Abitibi greenstone belt is the result of complex and local multistage metallogenic processes. A new classification is proposed that includes (1) OGS and OGS-like deposits dominated by metamorphic and magmatic fluids, respectively; (2) porphyry and IRGS that may contain gold remobilized during subsequent deformation episodes; (3) porphyry and IRGS that are overprinted by OGS. Both OGS and OGS-like deposits are associated with crustal-scale faults and display similar gold-deposition mechanisms. The main difference is that magmatic fluid input may increase the oxidation state and CO2 content of the mineralizing fluid for OGS-like deposits, while OGS are characterized by the circulation of reduced metamorphic fluids. For porphyry and IRGS, mineralizing fluids and metals have a magmatic origin. Porphyries are defined as base metal and gold-bearing deposits associated with large-volume intrusions, while IRGS are gold deposits that may display a polymetallic signature and that can be associated with small-volume syntectonic intrusions. Some porphyry, such as the Côté Gold deposit, demonstrate that magmatic systems can generate economically significant gold mineralization. In addition, many deposits display evidence of multistage processes and correspond to gold-bearing or gold-barren magmatic-hydrothermal systems overprinted by OGS or by gold-barren metamorphic fluids. In most cases, the source of gold remains debated. Whether magmatic activity was essential or marginal for fertilizing the upper crust during the Neoarchean remains a major topic for future research, and petrogenetic investigations may be paramount for distinguishing gold-endowed from barren greenstone belts.


1996 ◽  
Vol 265 (1-2) ◽  
pp. 127-150 ◽  
Author(s):  
W.U Mueller ◽  
R Daigneault ◽  
J.K Mortensen ◽  
E.H Chown

Sign in / Sign up

Export Citation Format

Share Document