scholarly journals Surficial geology, northeastern Cameron Hills, Northwest Territories, NTS 85-C/3, 4, 5, and 6

2021 ◽  
Author(s):  
I R Smith ◽  
R C Paulen ◽  
G W Hagedorn

The northeastern Cameron Hills comprise a Cretaceous bedrock upland, rising >550 m above the regional boreal plains. It was inundated by the Laurentide Ice Sheet and includes much of a prominent 60 by 20 km southwest-oriented mega-scale glacial lineation field, formed in thick till. Subsequent ice flow on northeast Cameron Hills occurred north to south, and a series of lobate and ice-thrust moraines suggest glacial surging. Rotational bedrock slumps cover the eastern and northern flanks of Cameron Hills, and extensive alluvial fan deposits draining from these slopes blanket the surrounding topography. The Cameron River formed as a glacial spillway, draining southwest across the upland before turning north and draining into Tathlina Lake. An expansive raised delta and glaciolacustrine sediment cover extending up to ~295 m above sea level, south of Tathlina Lake, records impoundment of an ice-marginal lake between the northeastward-retreating Laurentide Ice Sheet and Cameron Hills.

2007 ◽  
Vol 47 (2) ◽  
pp. 133-145 ◽  
Author(s):  
Arthur S. Dyke

ABSTRACT Lowther and Griffith islands, in the centre of Parry Channel, were overrun by the Laurentide Ice Sheet early in the last glaciation. Northeastward Laurentide ice flow persisted across at least Lowther Island until early Holocene déglaciation. Well constrained postglacial emergence curves for the islands confirm a southward dip of raised shorelines, contrary to the dip expected from the ice load configuration. This and previously reported incongruities may indicate regionally extensive tectonic complications of postglacial rebound aligned with major structural elements in the central Canadian Arctic Islands.


2019 ◽  
Author(s):  
G W Hagedorn ◽  
R C Paulen ◽  
I R Smith ◽  
M Ross ◽  
C M Neudorf ◽  
...  

2008 ◽  
Vol 45 (5) ◽  
pp. 593-610 ◽  
Author(s):  
Jan M. Bednarski

The Laurentide Ice Sheet reached the Canadian Cordillera during the last glacial maximum in northeastern British Columbia and adjacent Northwest Territories and all regional drainage to unglaciated areas in the north was dammed by the ice. Converging ice-flow patterns near the mountain front suggest that the Laurentide Ice Sheet likely coalesced with the Cordilleran Ice Sheet during the last glaciation. With deglaciation, the ice masses separated, but earlier ice retreat in the south meant that meltwater pooled between the mountain front and the Laurentide margin. The level of the flooding was controlled by persistent ice cover on the southern Franklin Mountains. Glacial Lake Liard formed when the Laurentide Ice Sheet retreated east of the southern Liard Range and, at its maximum extent, may have impounded water at least as far south as the Fort Nelson River. Deglaciation of the plains was marked by local variations in ice flow caused by a thin ice sheet becoming more affected by the topography and forming lobes in places. These lobes caused diversions in local drainage readily traced by abandoned meltwater channels. Radiocarbon ages from adjacent areas suggest the relative chronology of deglaciation presented here occurred between 13 and 11 ka BP.


1976 ◽  
Vol 6 (2) ◽  
pp. 167-183 ◽  
Author(s):  
J.T. Andrews ◽  
M.A.W. Mahaffy

A physically plausible three-dimensional numerical ice flow model is used to examine the rate at which the Laurentide Ice Sheet could spread and thicken using as input likely values for the rate of fall of snowline and the amount of net mass balance over the growing ice sheet. This provides then both a test of the hypothesis of “instantaneous glacierization” and of the suggested rapid fall of world sea level to between −20 and −70 m below present at 115,000 BP. Two experiments are described: The first terminated after 10,050 years of model run with ice sheets centered over Labrador-Ungava and Baffin Island with a total volume of 3.0 × 106 km3 of ice, whereas the second was completed after 10,000 years and resulted in a significantly larger ice sheet (still with two main centers) with a volume of 7.78 × 106 km3 of ice. This latter figure is equivalent to the mass required to lower world sea level by 19.4 m. Our results indicate that large ice sheets can develop in about 10,000 years under optimum conditions.


2004 ◽  
Vol 55 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Lynda A. Dredge

Abstract Melville Peninsula lies within the Foxe/Baffin Sector of the Laurentide Ice Sheet. Pre-Foxe/Pre-Wisconsin ice may have covered the entire peninsula. Preserved regolith in uplands indicates a subsequent weathering interval. Striations and till types indicate that, during the last (Foxe) glaciation, a local ice sheet (Melville Ice) initially developed on plateaus, but was later subsumed by the regional Foxe ice sheet. Ice from the central Foxe dome flowed across northern areas and Rae Isthmus, while ice from a subsidiary divide controlled flow on southern uplands. Ice remained cold-based and non-erosive on some plateaus, but changed from cold- to warm-based under other parts of the subsidiary ice divide, and was warm-based elsewhere. Ice streaming, generating carbonate till plumes, was prevalent during deglaciation. A late, quartzite-bearing southwestward ice flow from Baffin Island crossed onto the north coast. A marine incursion began in Committee Bay about 14 ka and advanced southwards to Wales Island by 8.6 ka. The marine-based ice centre in Foxe Basin broke up about 6.9 ka. Northern Melville Peninsula and Rae Isthmus were deglaciated rapidly, but remnant ice caps remained active and advanced into some areas. The ice caps began to retreat from coastal areas ~6.4 to 6.1 ka, by which time sea level had fallen from 150-180 m to 100 m.


1992 ◽  
Vol 29 (11) ◽  
pp. 2418-2425 ◽  
Author(s):  
A. Mark Tushingham

Churchill, Manitoba, is located near the centre of postglacial uplift caused by the Earth's recovery from the melting of the Laurentide Ice Sheet. The value of present-day uplift at Churchill has important implications in the study of postglacial uplift in that it can aid in constraining the thickness of the ice sheet and the rheology of the Earth. The tide-gauge record at Churchill since 1940 is examined, along with nearby Holocene relative sea-level data, geodetic measurements, and recent absolute gravimetry measurements, and a present-day rate of uplift of 8–9 mm/a is estimated. Glacial isostatic adjustment models yield similar estimates for the rate of uplift at Churchill. The effects of the tide-gauge record of the diversion of the Churchill River during the mid-1970's are discussed.


2013 ◽  
Vol 59 (216) ◽  
pp. 733-749 ◽  
Author(s):  
H. Goelzer ◽  
P. Huybrechts ◽  
J.J. Fürst ◽  
F.M. Nick ◽  
M.L. Andersen ◽  
...  

AbstractPhysically based projections of the Greenland ice sheet contribution to future sea-level change are subject to uncertainties of the atmospheric and oceanic climatic forcing and to the formulations within the ice flow model itself. Here a higher-order, three-dimensional thermomechanical ice flow model is used, initialized to the present-day geometry. The forcing comes from a high-resolution regional climate model and from a flowline model applied to four individual marine-terminated glaciers, and results are subsequently extended to the entire ice sheet. The experiments span the next 200 years and consider climate scenario SRES A1B. The surface mass-balance (SMB) scheme is taken either from a regional climate model or from a positive-degree-day (PDD) model using temperature and precipitation anomalies from the underlying climate models. Our model results show that outlet glacier dynamics only account for 6–18% of the sea-level contribution after 200 years, confirming earlier findings that stress the dominant effect of SMB changes. Furthermore, interaction between SMB and ice discharge limits the importance of outlet glacier dynamics with increasing atmospheric forcing. Forcing from the regional climate model produces a 14–31 % higher sea-level contribution compared to a PDD model run with the same parameters as for IPCC AR4.


Sign in / Sign up

Export Citation Format

Share Document