scholarly journals Late Pleistocene and Holocene glaciation and deglaciation of Melville Peninsula, Northern Laurentide Ice Sheet

2004 ◽  
Vol 55 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Lynda A. Dredge

Abstract Melville Peninsula lies within the Foxe/Baffin Sector of the Laurentide Ice Sheet. Pre-Foxe/Pre-Wisconsin ice may have covered the entire peninsula. Preserved regolith in uplands indicates a subsequent weathering interval. Striations and till types indicate that, during the last (Foxe) glaciation, a local ice sheet (Melville Ice) initially developed on plateaus, but was later subsumed by the regional Foxe ice sheet. Ice from the central Foxe dome flowed across northern areas and Rae Isthmus, while ice from a subsidiary divide controlled flow on southern uplands. Ice remained cold-based and non-erosive on some plateaus, but changed from cold- to warm-based under other parts of the subsidiary ice divide, and was warm-based elsewhere. Ice streaming, generating carbonate till plumes, was prevalent during deglaciation. A late, quartzite-bearing southwestward ice flow from Baffin Island crossed onto the north coast. A marine incursion began in Committee Bay about 14 ka and advanced southwards to Wales Island by 8.6 ka. The marine-based ice centre in Foxe Basin broke up about 6.9 ka. Northern Melville Peninsula and Rae Isthmus were deglaciated rapidly, but remnant ice caps remained active and advanced into some areas. The ice caps began to retreat from coastal areas ~6.4 to 6.1 ka, by which time sea level had fallen from 150-180 m to 100 m.

2011 ◽  
Vol 31 (3-4) ◽  
pp. 203-206 ◽  
Author(s):  
Harold W. Borns ◽  
Terence J. Hughes

Much of the Laurentide ice sheet in Maine, Atlantic Provinces, and southern Quebec was a "marine ice sheet," that is it was grounded below the prevailing sea level. When proper conditions prevailed, calving bays progressed into the ice sheet along ice streams partitioning it, leaving those portions grounded above sea level as residual ice caps. At least by 12,800 yrs. BP a calving bay had progressed up the St. Lawrence Lowland at least to Ottawa while a similar, but less extensive calving bay developed in Central Maine at approximately the same time. Concurrently, ice draining north into the St. Lawrence and south into the Central Maine calving bays rapidly lowered the surface of the intervening ice sheet until it eventually divided over the NE-SW trending Boundary and Longfellow Mountains and probably over other highland areas as well. A major consequence of these nearly simultaneous processes was the separation of an initial large ice cap over part of Maine, New Brunswick, and Québec which was bounded on the west by the calving bay in Central Maine, to the north by the calving bay in the St. Lawrence Lowland, to the south by the Bay of Fundy, and to the east by the Gulf of St. Lawrence. In coastal Maine, east of the calving bay, the margin of the ice cap receded above the marine limit at least 40 km and subsequently read-vanced terminating at Pineo Ridge moraine approximately 12,700 yrs. BP. These events are the stratigraphie and chronologic equivalent of the Cary-Pt. Huron recession/Pt. Huron readvance of the Great Lakes region.


1976 ◽  
Vol 6 (2) ◽  
pp. 167-183 ◽  
Author(s):  
J.T. Andrews ◽  
M.A.W. Mahaffy

A physically plausible three-dimensional numerical ice flow model is used to examine the rate at which the Laurentide Ice Sheet could spread and thicken using as input likely values for the rate of fall of snowline and the amount of net mass balance over the growing ice sheet. This provides then both a test of the hypothesis of “instantaneous glacierization” and of the suggested rapid fall of world sea level to between −20 and −70 m below present at 115,000 BP. Two experiments are described: The first terminated after 10,050 years of model run with ice sheets centered over Labrador-Ungava and Baffin Island with a total volume of 3.0 × 106 km3 of ice, whereas the second was completed after 10,000 years and resulted in a significantly larger ice sheet (still with two main centers) with a volume of 7.78 × 106 km3 of ice. This latter figure is equivalent to the mass required to lower world sea level by 19.4 m. Our results indicate that large ice sheets can develop in about 10,000 years under optimum conditions.


2007 ◽  
Vol 44 (2) ◽  
pp. 113-136 ◽  
Author(s):  
Victor K. Prest

ABSTRACTThis paper deals with the evolution of ideas concerning the configuration of flow patterns of the great inland ice sheets east of the Cordillera. The interpretations of overall extent of Laurentide ice have changed little in a century (except in the Arctic) but the manner of growth, centres of outflow, and ice-flow patterns, remain somewhat controversial. Present geological data however, clearly favour the notion of multiple centres of ice flow. The first map of the extent of the North American ice cover was published in 1881. A multi-domed concept of the ice sheet was illustrated in an 1894 sketch-map of radial flow from dispersal areas east and west of Hudson Bay. The first large format glacial map of North America was published in 1913. The binary concept of the ice sheet was in vogue until 1943 when a single centre in Hudson Bay was proposed, based on the westward growth of ice from Labrador/Québec. This Hudson dome concept persisted but was not illustrated until 1977. By this time it was evident from dispersal studies that the single dome concept was not viable. Dispersal studies clearly indicate long-continued westward ice flow from Québec into and across southern Hudson Bay, as well as eastward flow from Keewatin into the northern part of the bay. Computer-type modelling of the Laurentide ice sheet(s) further indicates their complex nature. The distribution of two indicator erratics from the Proterozoicage Belcher Island Fold Belt Group help constrain ice flow models. These erratics have been dispersed widely to the west, southwest and south by the Labrador Sector of more than one Laurentide ice sheet. They are abundant across the Paleozoic terrain of the Hudson-James Bay lowland, but decrease in abundance across the adjoining Archean upland. Similar erratics are common in northern Manitoba in the zone of confluence between Labrador and Keewatin Sector ice. Scattered occurences across the Prairies occur within the realm of south-flowing Keewatin ice. As these erratics are not known, and presumably not present, in Keewatin, they indicate redirection and deposition by Keewatin ice following one or more older advances of Labrador ice. The distribution of indicator erratics thus test our concepts of ice sheet growth.


1977 ◽  
Vol 14 (11) ◽  
pp. 2614-2619 ◽  
Author(s):  
A. MacS. Stalker

The margin of a former Laurentide ice sheet is traced through southern and central Alberta, from the Saskatchewan border southeast of Medicine Hat to beyond Rocky Mountain House, southwest of Edmonton. This margin, which marks the limit of a significant glacier advance or readvance, is thought to represent the maximum extent of Laurentide ice on the Canadian prairies during Classical Wisconsin time. In the south this margin follows a well-developed hummocky moraine; in the north it is indicated mainly by a discordance in trend of ice-flow markings, a disruption of drainage, and a change in maturity of topography on either side.


2003 ◽  
Vol 40 (3) ◽  
pp. 351-363 ◽  
Author(s):  
Nigel Atkinson

Geomorphic and chronologic evidence from Amund and Ellef Ringnes islands documents the configuration, dynamics, and collapse of the northwest sector of the Innuitian Ice Sheet. These data record the inundation of the Ringnes Islands by northwestward-flowing ice from divides spanning the alpine and lowland sectors of the Innuitian Ice Sheet. Ice-flow indicators and granite dispersal along eastern Amund Ringnes Island suggest Massey Sound was filled by an ice stream discharging coalescent alpine and lowland ice from Norwegian Bay. In contrast, the interior of Amund Ringnes Island was overridden by predominantly non-erosive, granite-free ice from a divide in the lowland sector of the ice sheet. Glacial landforms on Ellef Ringnes Island record coverage by largely non-erosive ice, but it remains uncertain whether these features relate to northward-flowing lowland ice or a cold-based local ice cap. Deglaciation of the Ringnes Islands commenced ~10 000 14C years ago. Deglacial dates between 9.7 and 9.2 ka BP record the sequential entry of marine fauna along Massey and Hassel sounds, concomitant with the southward retreat of trunk ice towards Norwegian Bay. These data suggest marine-based trunk glaciers were vulnerable to calving during pre-Holocene eustatic sea-level rise. However, deglacial dates from inner embayments indicate that residual ice caps persisted on Amund and Ellef Ringnes islands for 800 to 1400 14C years after retreat of trunk ice from the adjacent marine channels. Lateral meltwater channels record the subsequent retreat of these ice caps, which became increasingly confined within upland valleys after 8.6 ka BP.


2007 ◽  
Vol 47 (2) ◽  
pp. 133-145 ◽  
Author(s):  
Arthur S. Dyke

ABSTRACT Lowther and Griffith islands, in the centre of Parry Channel, were overrun by the Laurentide Ice Sheet early in the last glaciation. Northeastward Laurentide ice flow persisted across at least Lowther Island until early Holocene déglaciation. Well constrained postglacial emergence curves for the islands confirm a southward dip of raised shorelines, contrary to the dip expected from the ice load configuration. This and previously reported incongruities may indicate regionally extensive tectonic complications of postglacial rebound aligned with major structural elements in the central Canadian Arctic Islands.


2008 ◽  
Vol 45 (5) ◽  
pp. 593-610 ◽  
Author(s):  
Jan M. Bednarski

The Laurentide Ice Sheet reached the Canadian Cordillera during the last glacial maximum in northeastern British Columbia and adjacent Northwest Territories and all regional drainage to unglaciated areas in the north was dammed by the ice. Converging ice-flow patterns near the mountain front suggest that the Laurentide Ice Sheet likely coalesced with the Cordilleran Ice Sheet during the last glaciation. With deglaciation, the ice masses separated, but earlier ice retreat in the south meant that meltwater pooled between the mountain front and the Laurentide margin. The level of the flooding was controlled by persistent ice cover on the southern Franklin Mountains. Glacial Lake Liard formed when the Laurentide Ice Sheet retreated east of the southern Liard Range and, at its maximum extent, may have impounded water at least as far south as the Fort Nelson River. Deglaciation of the plains was marked by local variations in ice flow caused by a thin ice sheet becoming more affected by the topography and forming lobes in places. These lobes caused diversions in local drainage readily traced by abandoned meltwater channels. Radiocarbon ages from adjacent areas suggest the relative chronology of deglaciation presented here occurred between 13 and 11 ka BP.


Polar Record ◽  
1999 ◽  
Vol 35 (194) ◽  
pp. 215-230 ◽  
Author(s):  
Mikhail G. Grosswald ◽  
Terence J. Hughes ◽  
Norman P. Lasca

AbstractOriented assemblages of parallel ridges and elongated lakes are widespread on the coastal lowlands of northeast Eurasia and Arctic North America, in particular, in Alaska, Arctic Canada, and northeast Siberia. So far, only the oriented lakes have been of much scientific interest. They are believed to be formed by thermokarst in perennially frozen ice-rich sediments, while their orientation is accounted for either by impact of modern winds blowing at right angles to long axes of the lakes (when it concerns individual lakes), or by the influence of underlying bedrock structures (in the case of longitudinal and transverse alignment of lake clusters).En masseexamination of space images suggests that oriented lake-and-ridge assemblages, not the oriented lakes alone, occur in the Arctic. Hence any theory about their formation should account for the origin and orientation of the assemblages as a whole. The existing hypotheses appear inadequate for this end, so this paper proposes that the assemblages were initially created by glacial activity, that is, by ice sheets that drumlinized and tectonized their beds, as well as by sub- and proglacial meltwater, and then they were modified by thermokarst, solifluction, and aeolian processes. This assumption opens up an avenue by which all known features of oriented landforms in the Arctic can be explained. The paper suggests that the oriented landforms in Siberia and Alaska are largely signatures of a marine Arctic ice sheet that transgressed from the north, while the Baffin Island and Mackenzie Delta forms were created by the respective sectors of the Laurentide ice sheet. The oriented features discussed belong to the last Late Glacial through the Early Holocene.


2021 ◽  
Author(s):  
I R Smith ◽  
R C Paulen ◽  
G W Hagedorn

The northeastern Cameron Hills comprise a Cretaceous bedrock upland, rising >550 m above the regional boreal plains. It was inundated by the Laurentide Ice Sheet and includes much of a prominent 60 by 20 km southwest-oriented mega-scale glacial lineation field, formed in thick till. Subsequent ice flow on northeast Cameron Hills occurred north to south, and a series of lobate and ice-thrust moraines suggest glacial surging. Rotational bedrock slumps cover the eastern and northern flanks of Cameron Hills, and extensive alluvial fan deposits draining from these slopes blanket the surrounding topography. The Cameron River formed as a glacial spillway, draining southwest across the upland before turning north and draining into Tathlina Lake. An expansive raised delta and glaciolacustrine sediment cover extending up to ~295 m above sea level, south of Tathlina Lake, records impoundment of an ice-marginal lake between the northeastward-retreating Laurentide Ice Sheet and Cameron Hills.


2008 ◽  
Vol 41 (2) ◽  
pp. 189-198 ◽  
Author(s):  
Denis A. St-Onge

ABSTRACT This review of the most recent studies (up to June 1986) dealing with the Sangamonian in some key areas clearly indicates that, as yet, there is no definitive answer to the question : "When did the ice which eventually became the Laurentide Ice Sheet begin to accumulate?" In most areas the stratigraphic record simply identifies a probable interglacial period; the record yields no information on when ice growth may have started following that warm climatic interval. However the deltaic glacial lake sediments of the Scarborough Formation in the Toronto area and the Bécancour Till in the Trois-Rivières area are thought to possibly date from the Sangamonian (marine isotope sub-stages 5d-b). The Adam Till in the James Bay Lowland may be correlative. In Atlantic Canada, mostly in Cape Breton Island, plant fossils suggest a mid-Sangamonian climate roughly comparable to that which prevailed 11-12 ka ago. On Baffin Island a marine transgression of mid-Sangamonian age is thought to result from important ice accumulation in the area. These stratigraphic interpretations suggest significant glacier expansion in several areas of the North American continent during part of the Sangamonian Stage. Whether or not any of this ice survived a warmer climate period near the end of the Sangamonian to become part of the Laurentide Ice Sheet is a matter of speculation.


Sign in / Sign up

Export Citation Format

Share Document