scholarly journals Online appendix 1:Kruger National Park research supersites: Establishing long-term research sites for cross-disciplinary, multiscaled learning

Koedoe ◽  
2013 ◽  
Vol 55 (1) ◽  
Author(s):  
Izak P.J. Smit ◽  
Edward S. Riddell ◽  
Carola Cullum ◽  
Robin Petersen

Researchers interested in studying the effects of fire or herbivory in the Kruger National Park (KNP) often focus their research activities on the experimental burn plots or herbivore exclosure camps, respectively. These are manipulated sites that apply treatments, for example annual fires or total exclusion of fire and herbivores. However, many projects aim to study or monitor patterns and processes emerging under non-manipulated conditions, typically at sites with contrasting geologies and rainfall. Yet, these sites are usually selected in a haphazard and uncoordinated manner for different projects and, as a consequence, it is often not possible to integrate datasets and knowledge. An alternative to the ever-increasing number of unrelated sites scattered across the park are the ‘KNP research supersites’ which have been earmarked to geographically focus future research effort, acting as data-rich, long-term sites for monitoring and research. In this paper, we introduced the four recently established KNP research supersites, which cover the rainfall gradient and geological contrast of the KNP, presenting their rationale, selection criteria and location, along with existing datasets that describe their herbaceous biomass, woody cover, phenology, fire history, levels of herbivory. Additional site-specific datasets, which are already available, or which are in preparation, were outlined together with details for assessing these open-source datasets online.Conservation implications: The KNP research supersites will become increasingly used for research, monitoring and remote-sensing calibration and ground-truthing purposes. Scientists are encouraged to gain from, and contribute towards, these sites, which will facilitate long-term data collection, data-sharing and co-learning and, ultimately, lead to a more integrated, multiscaled and multitemporal understanding of savannahs.

Koedoe ◽  
2013 ◽  
Vol 55 (1) ◽  
Author(s):  
Izak P.J. Smit ◽  
Edward S. Riddell ◽  
Carola Cullum ◽  
Robin Petersen

Researchers interested in studying the effects of fire or herbivory in the Kruger National Park (KNP) often focus their research activities on the experimental burn plots or herbivore exclosure camps, respectively. These are manipulated sites that apply treatments, for example annual fires or total exclusion of fire and herbivores. However, many projects aim to study or monitor patterns and processes emerging under non-manipulated conditions, typically at sites with contrasting geologies and rainfall. Yet, these sites are usually selected in a haphazard and uncoordinated manner for different projects and, as a consequence, it is often not possible to integrate datasets and knowledge. An alternative to the ever-increasing number of unrelated sites scattered across the park are the ‘KNP research supersites’ which have been earmarked to geographically focus future research effort, acting as data-rich, long-term sites for monitoring and research. In this paper, we introduced the four recently established KNP research supersites, which cover the rainfall gradient and geological contrast of the KNP, presenting their rationale, selection criteria and location, along with existing datasets that describe their herbaceous biomass, woody cover, phenology, fire history, levels of herbivory. Additional site-specific datasets, which are already available, or which are in preparation, were outlined together with details for assessing these open-source datasets online.Conservation implications: The KNP research supersites will become increasingly used for research, monitoring and remote-sensing calibration and ground-truthing purposes. Scientists are encouraged to gain from, and contribute towards, these sites, which will facilitate long-term data collection, data-sharing and co-learning and, ultimately, lead to a more integrated, multiscaled and multitemporal understanding of savannahs.


Koedoe ◽  
2012 ◽  
Vol 54 (1) ◽  
Author(s):  
Frederik J. Venter ◽  
Navashni Govender

In 1954, the experimental burning programme into fire research was initiated in the Kruger National Park (KNP), South Africa. It is viewed as one of the last remaining long- term landscape fire experiments in Africa. Throughout the more than five decades of fire treatments in the experiment, numerous surveys (expanding various spatial and temporal scales), research projects (covering biotic and abiotic components) and analyses have been conducted with the aim to assess the impacts of different fire regimes on the savannah biome. The design of the experiment intended to test the effect of season and frequency of burning on vegetation within four major landscapes in the KNP. However, these effects have been partly obscured by factors not fully taken into account by the experimental design, namely, herbivory, artificial water provision and soil variation. Soil variation between replicates in the same landscape, as well as within individual replicates, has raised the issue of the representivity of the trial. This paper provided a description and ranking of the experimental burning trial according to the geomorphic and soil characteristics of each plot in comparison to the surrounding landscape.Conservation implications: The KNP burn plots are one of the largest and longest-running fire experiments on fire ecology in African savannahs. However, studies need to consider the underlying geomorphic and soil template when designing experiments and interpreting results. This work describes the representivity of the plots across, and within, treatments.


Author(s):  
Arthur M. Spickett ◽  
Gordon J. Gallivan ◽  
Ivan G. Horak

The study aimed to assess the long-term population dynamics of questing Rhipicephalus appendiculatus and Rhipicephalus zambeziensis in two landscape zones of the Kruger National Park (KNP). Ticks were collected by dragging the vegetation monthly in three habitats (grassland, woodland and gully) at two sites in the KNP (Nhlowa Road and Skukuza) from August 1988 to March 2002. Larvae were the most commonly collected stage of both species. More R. appendiculatus were collected at Nhlowa Road than at Skukuza, with larvae being most abundant from May to August, while nymphs were most abundant from August to December. Larvae were most commonly collected in the gullies from 1991 to 1994, but in the grassland and woodland habitats from 1998 onwards. Nymphs were most commonly collected in the grassland and woodland. More R. zambeziensis were collected at Skukuza than at Nhlowa Road, with larvae being most abundant from May to September, while nymphs were most abundant from August to November. Larvae and nymphs were most commonly collected in the woodland and gullies and least commonly in the grassland (p < 0.01). The lowest numbers of R. appendiculatus were collected in the mid-1990s after the 1991/1992 drought. Rhipicephalus zambeziensis numbers declined after 1991 and even further after 1998, dropping to their lowest levels during 2002. The changes in numbers of these two species reflected changes in rainfall and the populations of several of their large herbivore hosts, as well as differences in the relative humidity between the two sites over time.


Author(s):  
Gordon J. Gallivan ◽  
Andrea Spickett ◽  
Heloise Heyne ◽  
Arthur M. Spickett ◽  
Ivan G. Horak

Despite many studies regarding tick ecology, limited information on long-term changes in tick populations exist. This study assessed the long-term population dynamics of the less frequently collected questing ixodid ticks in the Kruger National Park (KNP). From 1988 to 2002, monthly dragging of the vegetation was performed in three habitats (grassland, woodland and gully) at two sites in the KNP (Nhlowa Road, Landscape Zone 17, and Skukuza, Landscape Zone 4). Amblyomma marmoreum and Rhipicephalus evertsi evertsi were collected as larvae most commonly. Most A. marmoreum larvae were collected at Skukuza and numbers peaked from March to July. More R. evertsi evertsi larvae were collected at Nhlowa Road and numbers peaked in summer and in winter, while at Skukuza there was a single peak in spring. Haemaphysalis elliptica, Rhipicephalus simus and Rhipicephalus turanicus were collected as adults most commonly. More Ha. elliptica and R. turanicus were collected at Nhlowa Road than at Skukuza, while R. simus numbers from the two sites were approximately equal. Ha. elliptica were collected most often between February and June, and R. simus and R. turanicus during February and March. All three species were collected more frequently in gullies than in grassland or woodland. Their numbers increased in 1994/1995 following an eruption of rodents, the preferred hosts of the immature stages. The different host-seeking strategies of ticks largely determine the development stage at which they are likely to be collected during vegetation dragging and reflect a complex interaction between ticks, their hosts and the environment.


2021 ◽  
Vol 13 (14) ◽  
pp. 20278-20283
Author(s):  
Dede Aulia Rahman ◽  
Mochamad Syamsudin ◽  
Asep Yayus Firdaus ◽  
Herry Trisna Afriandi ◽  
Anggodo

A long-term camera-trap study of the Javan Rhinoceros in 2013 in Ujung Kulon National Park (UKNP), Indonesia, allowed us to document the first photographic evidence of Dholes preying on a young Banteng and other species. Our photographs suggested that Dholes get in large packs to predate on Banteng and commonly separate young from adults when attacking the young. Future research should examine the Dhole diet and interspecific relationships between Dhole and Banteng to gain a better understanding of the ecological impacts of endangered predators on endangered prey in UKNP.


2007 ◽  
Vol 16 (5) ◽  
pp. 519 ◽  
Author(s):  
Brian W. van Wilgen ◽  
Navashni Govender ◽  
Harry C. Biggs

The present paper reviews a long-term fire experiment in the Kruger National Park, South Africa, established in 1954 to support fire management. The paper’s goals are: (1) to assess learning, with a focus on relevance for fire management; (2) to examine how findings influenced changes in fire management; and (3) to reflect on the experiment’s future. Results show that fire treatments affected vegetation structure and biomass more than species composition. Effects on vegetation were most marked in extreme treatments (annual burning, burning in the summer wet season, or long periods of fire exclusion), and were greater in areas of higher rainfall. Faunal communities and soil physiology were largely unaffected by fire. Since the inception of the experiment, paradigms in savanna ecology have changed to encompass heterogeneity and variability. The design of the experiment, reflecting the understanding of the 1950s, does not cater for variability, and as a result, the experiment had little direct influence on changes in management policy. Notwithstanding this, managers accept that basic research influences the understanding of fundamental ecosystem function, and they recognise that it promotes appropriate adaptive management by contributing to predictive understanding. This has been a major reason for maintaining the experiment for over 50 years.


Oryx ◽  
2007 ◽  
Vol 41 (2) ◽  
pp. 160-167 ◽  
Author(s):  
Llewellyn C. Foxcroft ◽  
Stefanie Freitag-Ronaldson

AbstractLong-term ecological and economic sustainability will ultimately determine the outcome of any conservation management programme. Invasive alien plants, first recorded in the Kruger National Park, South Africa, in 1937, are now recognized as one of the greatest threats to the biodiversity of this Park. Such plants have been managed in the Park since 1956, with control advancing mainly through a process of trial and error. Refinement of invasive plant management strategies has resulted in an understanding of the target plants' biology and ecology, herbicide use and herbicide-plant interactions, as well as the plant-insect interactions of biological control. Careful integration of different control methods has proved essential to ensure the most appropriate use of techniques to deliver the best possible results from the resources available and achieve long-term sustainability. We outline the development of control efforts and current control programmes and the process of their incorporation into the institutional memory of Kruger National Park over the last 7 decades.


Koedoe ◽  
1981 ◽  
Vol 24 (1) ◽  
Author(s):  
G. L Smuts ◽  
I. J Whyte

Hippopotamus Hippopotamus amphibius reproduction in the Kruger National Park, Republic of South Africa, is described and compared with that of other populations in Africa and with captive reared specimens. Information collected during drought and pluvial periods indicates that adult hippo cows react to adverse environmental conditions (reduced shelter in pools, overcrowding and food scarcity) by marked declines in conception rates (from 36,7 @ 5,6). Indirect evidence indicates that when environmental conditions are unfavourable calf survival is improved by extending the period of lactation and by calves suckling more than one cow. During favourable years some calves mature early (S S, 2 years, and 9 9 5 years) but generally sexual maturity is attained at six and 9-10 years for males and females respectively. The calving interval, when environmental conditions are favourable, is about two years and reproductive senescence and sterility are insignificant factors. The population sex ratio is 1:1. Hippos appear to be typical K-selected species. Environmental constraints have caused them to adopt a low reproductive rate and high survival rate and consequently a close adjustment to the long-term carrying capacity of the environment.


Koedoe ◽  
2019 ◽  
Vol 61 (1) ◽  
Author(s):  
Brianna M. Lind ◽  
Andrew B. Davies

The protection of biodiversity is critical to ecosystem function and is a primary management goal for conservation areas globally. Maintaining a current inventory of known diversity is a central component of achieving this goal and serves as an essential starting point for future research endeavours. Since the first published survey of termites in South Africa’s Kruger National Park (KNP) over 55 years ago, our understanding of termite diversity has expanded sufficiently to merit an update and formal checklist. Here we revise the inventory of termite diversity in KNP and summarise the taxonomic and functional diversity of termites in the park. A thorough review of recent termite research in KNP added 6 new genera and 13 species to what was found in Coaton’s original survey, with one genus, Anenteotermes, recorded for the first time in southern Africa. Based on the updated species checklist, the majority of genera in the park belong to Feeding Group II (39%) and the Termitidae family (75%).Conservation implications: In savannas, termites play crucial roles in nutrient cycling, water redistribution and plant dynamics. Systematically cataloguing termite diversity and assemblage composition in the park provides an essential baseline for scientific research, aids biodiversity conservation efforts and encourages scientists and managers to consider termites in ecosystem functioning and management. Having more detailed descriptions of genera, species and feeding groups allows for more tangible, ecologically relevant attributions of termite influence, facilitates enhanced inquiry and allows for more realistic quantification of termite roles in key ecosystem processes.


Sign in / Sign up

Export Citation Format

Share Document