scholarly journals Elephants respond to resource trade-offs in an aseasonal system through daily and annual variability in resource selection

Koedoe ◽  
2017 ◽  
Vol 59 (1) ◽  
Author(s):  
Timothy J. Fullman ◽  
Gregory A. Kiker ◽  
Angela Gaylard ◽  
Jane Southworth ◽  
Peter Waylen ◽  
...  

Animals and humans regularly make trade-offs between competing objectives. In Addo Elephant National Park (AENP), elephants (Loxodonta africana) trade off selection of resources, while managers balance tourist desires with conservation of elephants and rare plants. Elephant resource selection has been examined in seasonal savannas, but is understudied in aseasonal systems like AENP. Understanding elephant selection may suggest ways to minimise management trade-offs. We evaluated how elephants select vegetation productivity, distance to water, slope and terrain ruggedness across time in AENP and used this information to suggest management strategies that balance the needs of tourists and biodiversity. Resource selection functions with time-interacted covariates were developed for female elephants, using three data sets of daily movement to capture circadian and annual patterns of resource use. Results were predicted in areas of AENP currently unavailable to elephants to explore potential effects of future elephant access. Elephants displayed dynamic resource selection at daily and annual scales to meet competing requirements for resources. In summer, selection patterns generally conformed to those seen in savannas, but these relationships became weaker or reversed in winter. At daily scales, resource selection in the morning differed from that of midday and afternoon, likely reflecting trade-offs between acquiring sufficient forage and water. Dynamic selection strategies exist even in an aseasonal system, with both daily and annual patterns. This reinforces the importance of considering changing resource availability and trade-offs in studies of animal selection.Conservation implications: Guiding tourism based on knowledge of elephant habitat selection may improve viewing success without requiring increased elephant numbers. If AENP managers expand elephant habitat to reduce density, our model predicts where elephant use may concentrate and where botanical reserves may be needed to protect rare plants from elephant impacts.

2018 ◽  
Author(s):  
Jonathan Teutenberg

AbstractThe current state-of-the-art assemblers of long, error-prone reads rely on detecting all-vs-all overlaps within the set of reads with overlaps represented by a sparse selection of short subsequences or “seeds”. Though the quality of selection of these seeds can impact both accuracy and speed of overlap detection, existing algorithms do little more than ignore over-represented seeds. Here we propose several more informed seed selection strategies to improve precision and recall of overlaps. These strategies are evaluated against real long-read data sets with a range of fixed seed sizes. We show that these strategies substantially improve the utility of individual seeds over uninformed selection.


2003 ◽  
Vol 40 (2) ◽  
pp. 225-234 ◽  
Author(s):  
Michael J. Brusco ◽  
J. Dennis Cradit ◽  
Armen Tashchian

The authors present a multicriterion clusterwise linear regression model that can be applied to a joint segmentation setting. The model enables the consideration of segment homogeneity, as well as multiple dependent variables (segmentation bases), in a weighted objective function. The authors propose a heuristic solution strategy based on simulated annealing and examine trade-offs in the recovery of multiple true cluster structures for several synthetic data sets. They also propose an application of the model to a joint segmentation problem in the telecommunications industry, which addresses important issues pertaining to the selection of the objective function weights and the number of clusters.


Ecography ◽  
2015 ◽  
Vol 38 (10) ◽  
pp. 1049-1059 ◽  
Author(s):  
Guillaume Bastille-Rousseau ◽  
Jonathan R. Potts ◽  
James A. Schaefer ◽  
Mark A. Lewis ◽  
E. Hance Ellington ◽  
...  

1995 ◽  
Vol 31 (2) ◽  
pp. 193-204 ◽  
Author(s):  
Koen Grijspeerdt ◽  
Peter Vanrolleghem ◽  
Willy Verstraete

A comparative study of several recently proposed one-dimensional sedimentation models has been made. This has been achieved by fitting these models to steady-state and dynamic concentration profiles obtained in a down-scaled secondary decanter. The models were evaluated with several a posteriori model selection criteria. Since the purpose of the modelling task is to do on-line simulations, the calculation time was used as one of the selection criteria. Finally, the practical identifiability of the models for the available data sets was also investigated. It could be concluded that the model of Takács et al. (1991) gave the most reliable results.


2021 ◽  
Vol 174 (1) ◽  
Author(s):  
Amirlan Seksenbayev

AbstractWe study two closely related problems in the online selection of increasing subsequence. In the first problem, introduced by Samuels and Steele (Ann. Probab. 9(6):937–947, 1981), the objective is to maximise the length of a subsequence selected by a nonanticipating strategy from a random sample of given size $n$ n . In the dual problem, recently studied by Arlotto et al. (Random Struct. Algorithms 49:235–252, 2016), the objective is to minimise the expected time needed to choose an increasing subsequence of given length $k$ k from a sequence of infinite length. Developing a method based on the monotonicity of the dynamic programming equation, we derive the two-term asymptotic expansions for the optimal values, with $O(1)$ O ( 1 ) remainder in the first problem and $O(k)$ O ( k ) in the second. Settling a conjecture in Arlotto et al. (Random Struct. Algorithms 52:41–53, 2018), we also design selection strategies to achieve optimality within these bounds, that are, in a sense, best possible.


Author(s):  
Christian Luksch ◽  
Lukas Prost ◽  
Michael Wimmer

We present a real-time rendering technique for photometric polygonal lights. Our method uses a numerical integration technique based on a triangulation to calculate noise-free diffuse shading. We include a dynamic point in the triangulation that provides a continuous near-field illumination resembling the shape of the light emitter and its characteristics. We evaluate the accuracy of our approach with a diverse selection of photometric measurement data sets in a comprehensive benchmark framework. Furthermore, we provide an extension for specular reflection on surfaces with arbitrary roughness that facilitates the use of existing real-time shading techniques. Our technique is easy to integrate into real-time rendering systems and extends the range of possible applications with photometric area lights.


Author(s):  
A Salman Avestimehr ◽  
Seyed Mohammadreza Mousavi Kalan ◽  
Mahdi Soltanolkotabi

Abstract Dealing with the shear size and complexity of today’s massive data sets requires computational platforms that can analyze data in a parallelized and distributed fashion. A major bottleneck that arises in such modern distributed computing environments is that some of the worker nodes may run slow. These nodes a.k.a. stragglers can significantly slow down computation as the slowest node may dictate the overall computational time. A recent computational framework, called encoded optimization, creates redundancy in the data to mitigate the effect of stragglers. In this paper, we develop novel mathematical understanding for this framework demonstrating its effectiveness in much broader settings than was previously understood. We also analyze the convergence behavior of iterative encoded optimization algorithms, allowing us to characterize fundamental trade-offs between convergence rate, size of data set, accuracy, computational load (or data redundancy) and straggler toleration in this framework.


Sign in / Sign up

Export Citation Format

Share Document