scholarly journals Advancing text prediction skills through translanguaging

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Vukile D. Mgijima
Keyword(s):  
Author(s):  
Christian Beck ◽  
Gottfried Seisenbacher ◽  
Georg Edelmayer ◽  
Wolfgang Zagler

Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1353
Author(s):  
Yiwei Feng ◽  
M. Asif Naeem ◽  
Farhaan Mirza ◽  
Ali Tahir

Email is the most common and effective source of communication for most enterprises and individuals. In the corporate sector the volume of email received daily is significant while timely reply of each email is important. This generates a huge amount of work for the organisation, in particular for the staff located in the help-desk role. In this paper we present a novel Smart E-mail Management System (SEMS) for handling the issue of E-mail overload. The Term Frequency-Inverse Document Frequency (TF-IDF) model was used for designing a Smart Email Client in previous research. Since TF-IDF does not consider semantics between words, the replies suggested by the model are not very accurate. In this paper we apply Document to Vector (Doc2Vec) and introduce a novel Gated Recurrent Unit Sentence to Vector (GRU-Sent2Vec), which is a hybrid model by combining GRU and Sent2Vec. Both models are more intelligent as compared to TF-IDF. We compare our results from both models with TF-IDF. The Doc2Vec model performs the best on predicting a response for a similar new incoming Email. In our case, since the dataset is too small to require a deep learning algorithm model, the GRU-Sent2Vec hybrid model cannot produce ideal results, whereas in our understanding it is a robust method for long-text prediction.


2015 ◽  
Vol 7 (1) ◽  
pp. 1-29 ◽  
Author(s):  
Luís Filipe Garcia ◽  
Luís Caldas De Oliveira ◽  
David Martins De Matos

Geophysics ◽  
2013 ◽  
Vol 78 (1) ◽  
pp. A1-A5 ◽  
Author(s):  
Mostafa Naghizadeh ◽  
Mauricio Sacchi

We tested a strategy for beyond-alias interpolation of seismic data using Cadzow reconstruction. The strategy enables Cadzow reconstruction to be used for interpolation of regularly sampled seismic records. First, in the frequency-space ([Formula: see text]) domain, we generated a Hankel matrix from the spatial samples of the low frequencies. To perform interpolation at a given frequency, the spatial samples were interlaced with zero samples and another Hankel matrix was generated from the zero-interlaced data. Next, the rank-reduced eigen-decomposition of the Hankel matrix at low frequencies was used for beyond-alias preconditioning of the Hankel matrix at a given frequency. Finally, antidiagonal averaging of the conditioned Hankel matrix produced the final interpolated data. In addition, the multidimensional extension of the proposed algorithm was explained. The proposed method provides a unifying thread between reduced-rank Cadzow reconstruction and beyond alias [Formula: see text] prediction error interpolation. Synthetic and real data examples were provided to examine the performance of the proposed interpolation method.


Author(s):  
George Foster ◽  
Philippe Langlais ◽  
Guy Lapalme

2016 ◽  
Vol 28 (5) ◽  
pp. 681-686
Author(s):  
Ikki Tanaka ◽  
◽  
Hiromitsu Ohmori

[abstFig src='/00280005/09.jpg' width='300' text='Prediction errors at observation points' ] Wind energy use is being developed worldwide. Improving wind speed forecasting techniques has become important due to their economic impact on power system operation with increasing wind power penetration. Wind speed prediction is generally difficult due to wind’s intermittent nature, so many approaches have been proposed by researchers. The viability of these techniques has been verified, however, in only a certain few areas, rather than being evaluated quantitatively in many different locations. We use data from different parts of Japan for one-step-ahead prediction and applied different approaches at each point, which was then evaluated such as mean absolute error. We used the persistent model, the ARMA-GARCH model, the nonlinear autoregressive network with external input (NARX), the recurrent neural network (RNN), and support vector regression (SVR). Our results suggest that it is difficult to create the same model which minimizes error in all areas, confirming the need for individual predictors for individual regions.


2019 ◽  
Vol 23 (3) ◽  
Author(s):  
Samarth Navali ◽  
Jyothirmayi Kolachalam ◽  
Vanraj Vala

Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. WA115-WA136 ◽  
Author(s):  
Hao Zhang ◽  
Xiuyan Yang ◽  
Jianwei Ma

We have developed an interpolation method based on the denoising convolutional neural network (CNN) for seismic data. It provides a simple and efficient way to break through the problem of the scarcity of geophysical training labels that are often required by deep learning methods. This new method consists of two steps: (1) training a set of CNN denoisers to learn denoising from natural image noisy-clean pairs and (2) integrating the trained CNN denoisers into the project onto convex set (POCS) framework to perform seismic data interpolation. We call it the CNN-POCS method. This method alleviates the demands of seismic data that require shared similar features in the applications of end-to-end deep learning for seismic data interpolation. Additionally, the adopted method is flexible and applicable for different types of missing traces because the missing or down-sampling locations are not involved in the training step; thus, it is of a plug-and-play nature. These indicate the high generalizability of the proposed method and a reduction in the necessity of problem-specific training. The primary results of synthetic and field data show promising interpolation performances of the adopted CNN-POCS method in terms of the signal-to-noise ratio, dealiasing, and weak-feature reconstruction, in comparison with the traditional [Formula: see text]-[Formula: see text] prediction filtering, curvelet transform, and block-matching 3D filtering methods.


Sign in / Sign up

Export Citation Format

Share Document