scholarly journals Effect of Static Load on the Nucleus Pulposus of Rabbit Intervertebral Disc Motion Segment in Ex vivo Organ Culture

2016 ◽  
Vol 129 (19) ◽  
pp. 2338-2346 ◽  
Author(s):  
Li-Guo Zhu ◽  
Min-Shan Feng ◽  
Jia-Wen Zhan ◽  
Ping Zhang ◽  
Jie Yu
2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Jia-Wen Zhan ◽  
Min-Shan Feng ◽  
Li-Guo Zhu ◽  
Ping Zhang ◽  
Jie Yu

The development of mechanically active culture systems helps in understanding of the role of mechanical stress in intervertebral disc (IVD) degeneration. Motion segment cultures facilitate the application and control of mechanical loads. The purpose of this study was to establish a culturing method for rabbit IVD motion segments to observe the effect of static load on the whole disc organ. Segments were cultured in custom-made apparatuses under a constant, compressive load (3 kg) for 2 weeks. Tissue integrity, matrix synthesis, and matrix gene expression profile were assessed and compared with fresh one. The results showedex vivoculturing of samples gradually destroyed the morphology. Proteoglycan contents and gene expression were decreased and downregulated obviously. However, immunohistochemical staining intensity and collagen type II gene expression were significantly enhanced and upregulated. In contrast, these trends were reversed under constant compression. These results indicated short-term static load stimulated the synthesis of type II collagen; however, constant compression led to progressive degeneration and specifically to proteoglycan. Through this study a loading and organ-culturing system forex vivorabbit IVD motion segments was developed, which can be used to study the effects of mechanical stimulation on the biology of IVDs and the pathomechanics of IVD degeneration.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Shufen Liu ◽  
Yuhao Cheng ◽  
Yuqi Tan ◽  
Jingcheng Dong ◽  
Qin Bian

Objectives. Aberrant transforming growth factor β (TGFβ) activation is detrimental to both nucleus pulposus (NP) cells and cartilage endplates (CEPs), which can lead to intervertebral disc degeneration (IDD). Ligustrazine (LIG) reduces the expression of inflammatory factors and TGFβ1 in hypertrophic CEP to prevent IDD. In this study, we investigate the effects of LIG on NP cells and the TGFβ signaling. Design. LIG was injected to the lumbar spinal instability (LSI) mouse model. The effect of LIG was evaluated by intervertebral disc (IVD) score in the LSI mouse model. The expression of activated TGFβ was examined using immunostaining with pSmad2/3 antibody. The upright posture (UP) rat model was also treated and evaluated in the same manner to assess the effect of LIG. In ex vivo study, IVDs from four-week old mice were isolated and treated with 10−5, 10−6, and 10−7 M of LIG. We used western blot to detect activated TGFβ expression. TGFβ-treated human nucleus pulposus cells (HNPCs) were cotreated with optimized dose of LIG in vitro. Immunofluorescence staining was performed to determine pSmad2/3, connective tissue growth factor (CCN2), and aggrecan (ACAN) expression levels. Results. IVD score and the percentage of pSmad2/3+ NP cells were low in LIG-treated LSI mice in comparison with LSI mice, but close to the levels in the Sham group. Similarly, LIG reduced the overexpression of TGFβ1 in NP cells. The inhibitory effect of LIG was dose dependent. A dose of 10−5 M LIG not only strongly attenuated Smad2/3 phosphorylation in TGFβ-treated IVD ex vivo but also suppressed pSmad2/3, CCN2, and ACAN expression in TGFβ-treated NP cells in vitro. Conclusions. LIG prevents IDD via suppression of TGFβ overactivation in NP cells.


2016 ◽  
Vol 22 (7) ◽  
pp. 636-643 ◽  
Author(s):  
Michael Grant ◽  
Laura M. Epure ◽  
Omar Salem ◽  
Nizar AlGarni ◽  
Ovidiu Ciobanu ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Jinwei Ying ◽  
Zhihua Han ◽  
Shishen Pei ◽  
Linghao Su ◽  
Dike Ruan

Stromal cell-derived factor-1α (SDF-1α) plays a significant role in mobilizing and recruiting mesenchymal stem cells (MSCs) to the sites of injury. This study investigated the potential of SDF-1α released in the degenerative intervertebral disc (IVD) to activate and recruit endogenous nucleus pulposus-derived stem cells (NPSCs) for regeneration in situ. We found SDF-1α was highly expressed and secreted by the native disc cells when cultured in the proinflammatory mediators in vitro mimicking the degenerative settings. Immunohistochemical staining also showed that the expression level of SDF-1α was significantly higher in the degenerative group compared to that in the normal group. In addition to enhancement of viability, SDF-1α significantly increased the number of NPSCs migrating into the center of the nucleotomized bovine IVD ex vivo. After the systemic delivery of exogenous PKH26-labelled NPSCs into the rats in vivo, there was a significant difference in the distribution of the migrated cells between the normal and the degenerative IVDs, which might be caused by the different expression levels of SDF-1α. However, blocking CXC chemokine receptor 4 (CXCR4) with AMD3100 effectively abrogated SDF-1α-stimulated proliferation and migration. Taken together, SDF-1α may be a key chemoattractant that is highly produced in response to the degenerative changes, which can be used to enhance the proliferation and recruitment of endogenous stem cells into the IVDs. These findings may be of importance for understanding IVD regenerative mechanisms and development of regenerative strategies in situ for IVD degeneration.


2016 ◽  
Vol 6 (1_suppl) ◽  
pp. s-0036-1582594-s-0036-1582594
Author(s):  
Graciosa Q. Teixeira ◽  
Antje Boldt ◽  
Ines Nagl ◽  
Maria Molinos ◽  
Catarina Leite Pereira ◽  
...  

2016 ◽  
Vol 22 (1) ◽  
pp. 8-19 ◽  
Author(s):  
Graciosa Q. Teixeira ◽  
Antje Boldt ◽  
Ines Nagl ◽  
Catarina Leite Pereira ◽  
Karin Benz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document