Analyzing bite marks using 3D scanners

2021 ◽  
Vol 6 (2) ◽  
pp. 127
Author(s):  
M Dhanya
Keyword(s):  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jerzy Montusiewicz ◽  
Marek Miłosz ◽  
Jacek Kęsik ◽  
Kamil Żyła

AbstractHistorical costumes are part of cultural heritage. Unlike architectural monuments, they are very fragile, which exacerbates the problems of their protection and popularisation. A big help in this can be the digitisation of their appearance, preferably using modern techniques of three-dimensional representation (3D). The article presents the results of the search for examples and methodologies of implementing 3D scanning of exhibited historical clothes as well as the attendant problems. From a review of scientific literature it turns out that so far practically no one in the world has made any methodical attempts at scanning historical clothes using structured-light 3D scanners (SLS) and developing an appropriate methodology. The vast majority of methods for creating 3D models of clothes used photogrammetry and 3D modelling software. Therefore, an innovative approach was proposed to the problem of creating 3D models of exhibited historical clothes through their digitalisation by means of a 3D scanner using structural light technology. A proposal for the methodology of this process and concrete examples of its implementation and results are presented. The problems related to the scanning of 3D historical clothes are also described, as well as a proposal how to solve them or minimise their impact. The implementation of the methodology is presented on the example of scanning elements of the Emir of Bukhara's costume (Uzbekistan) from the end of the nineteenth century, consisting of the gown, turban and shoes. Moreover, the way of using 3D models and information technologies to popularise cultural heritage in the space of digital resources is also discussed.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Timo Homburg ◽  
Anja Cramer ◽  
Laura Raddatz ◽  
Hubert Mara

AbstractMotivated by the increased use of 3D acquisition of objects by cultural heritage institutions, we were investigating ontologies and metadata schemes for the acquisition process to provide details about the 3D capturing, which can be combined with preexisting ontologies describing an object. Therefore we divided the 3D capturing workflow into common steps starting with the object being placed in front of a 3D scanner to preparation and publication of the 3D datasets and/or derived images. While the proposed ontology is well defined on a coarse level of detail for very different techniques, e.g. Stucture from Motion and LiDAR we elaborated the metadata scheme in very fine detail for 3D scanners available at our institutions. This includes practical experiments with measurement data from past and current projects including datasets published at Zenodo as guiding examples and the source code for their computation. Additionally, the free and Open Source GigaMesh Software Framework’s analysis and processing methods have been extended to provide metadata about the 3D processing steps like mesh cleaning as well as 2D image generation. Finally, we discuss the current limitations and give an outlook about future extensions.


1989 ◽  
Vol 10 (2) ◽  
pp. 140-143 ◽  
Author(s):  
Michael H. Gold ◽  
Henry H. Roenigk ◽  
E Steven Smith ◽  
Larry J. Pierce
Keyword(s):  

BDJ ◽  
2004 ◽  
Vol 196 (4) ◽  
pp. 237-237 ◽  
Author(s):  
D K Whittaker
Keyword(s):  

2008 ◽  
Vol 32 (2) ◽  
pp. 204-220 ◽  
Author(s):  
Michael Wand ◽  
Alexander Berner ◽  
Martin Bokeloh ◽  
Philipp Jenke ◽  
Arno Fleck ◽  
...  

Cerâmica ◽  
2014 ◽  
Vol 60 (356) ◽  
pp. 465-470 ◽  
Author(s):  
D. P. C. Velazco ◽  
E. F. Sancet ◽  
F. Urbaneja ◽  
M. Piccico ◽  
M. F. Serra ◽  
...  

Computer assisted designing (CAD) is well known for several decades and employed for ceramic manufacturing almost since the beginning, but usually employed in the first part of the projectual ideation processes, neither in the prototyping nor in the manufacturing stages. The rapid prototyping machines, also known as 3D printers, have the capacity to produce in a few hours real pieces using plastic materials of high resistance, with great precision and similarity with respect to the original, based on unprecedented digital models produced by means of modeling with specific design software or from the digitalization of existing parts using the so-called 3D scanners. The main objective of the work is to develop the methodology used in the entire process of building a part in ceramics from the interrelationship between traditional techniques and new technologies for the manufacture of prototypes. And to take advantage of the benefits that allow us this new reproduction technology. The experience was based on the generation of a complex piece, in digital format, which served as the model. A regular 15 cm icosahedron presented features complex enough not to advise the production of the model by means of the traditional techniques of ceramics (manual or mechanical). From this digital model, a plaster mold was made in the traditional way in order to slip cast clay based slurries, freely dried in air and fired and glazed in the traditional way. This experience has shown the working hypothesis and opens up the possibility of new lines of work to academic and technological levels that will be explored in the near future. This technology provides a wide range of options to address the formal aspect of a part to be performed for the field of design, architecture, industrial design, the traditional pottery, ceramic art, etc., which allow you to amplify the formal possibilities, save time and therefore costs when drafting the necessary and appropriate matrixes to each requirement.


2016 ◽  
Vol 62 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Adam Chromy

Abstract This paper deals with application of 3D scanning technology in medicine. Important properties of 3D scanners are discussed with emphasize on medical applications. Construction of medical 3D scanner according to these specifications is described and practical application of its use in medical volumetry is presented. Besides volumetry, such 3D scanner is usable for many other purposes, like monitoring of recovery process, ergonomic splint manufacturing or inflammation detection. 3D scanning introduces novel volumetric method, which is compared with standard methods. The new method is more accurate compared to present ones. Principles of this method are discussed in paper and its accuracy is evaluated and experimentally verified.


2014 ◽  
Vol 69 ◽  
pp. 393-401 ◽  
Author(s):  
Teodor Tóth ◽  
Jozef Živčák
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document