scholarly journals Role of Insertion Sequence Element IS256 as a Virulence Marker and Its Association with Biofilm Formation among Methicillin-Resistant Staphylococcus epidermidis from Hospital and Community Settings in Chennai, South India

2018 ◽  
Vol 36 (1) ◽  
pp. 124-126 ◽  
Author(s):  
Saravanan Murugesan ◽  
Stalin Mani ◽  
Indhumathy Kuppusamy ◽  
Padma Krishnan
2004 ◽  
Vol 72 (2) ◽  
pp. 1210-1215 ◽  
Author(s):  
Svetlana Kozitskaya ◽  
Seung-Hak Cho ◽  
Katja Dietrich ◽  
Reinhard Marre ◽  
Kurt Naber ◽  
...  

ABSTRACT Staphylococcus epidermidis is a normal constituent of the healthy human microflora, but it is also the most common cause of nosocomial infections associated with the use of indwelling medical devices. Isolates from device-associated infections are known for their pronounced phenotypic and genetic variability, and in this study we searched for factors that might contribute to this flexibility. We show that mutator phenotypes, which exhibit elevated spontaneous mutation rates, are rare among both pathogenic and commensal S. epidermidis strains. However, the study revealed that, in contrast to those of commensal strains, the genomes of clinical S. epidermidis strains carry multiple copies of the insertion sequence IS256, while other typical staphylococcal insertion sequences, such as IS257 and IS1272, are distributed equally among saprophytic and clinical isolates. Moreover, detection of IS256 was found to be associated with biofilm formation and the presence of the icaADBC operon as well as with gentamicin and oxacillin resistance in the clinical strains. The data suggest that IS256 is a characteristic element in the genome of multiresistant nosocomial S. epidermidis isolates that might be involved in the flexibility and adaptation of the genome in clinical isolates.


2005 ◽  
Vol 71 (8) ◽  
pp. 4930-4934 ◽  
Author(s):  
Yanping Wang ◽  
Gui-Rong Wang ◽  
Nadja B. Shoemaker ◽  
Terence R. Whitehead ◽  
Abigail A. Salyers

ABSTRACT The ermG gene was first found in the soil bacterium Bacillus sphaericus. More recently, it was found in several human intestinal Bacteroides species. We report here the first finding of ermG genes in gram-positive bacteria isolated from porcine feces and from under-barn manure pits used to store porcine wastes. The porcine ermG sequences were identical to the sequence of the B. sphaericus ermG gene except that six of the seven ermG-containing strains contained an insertion sequence element insertion in the C-terminal end of the gene. The porcine ermG genes were found in three different gram-positive genera, an indication that it is possible that the gene is being spread by horizontal gene transfer. A segment of a Bacteroides conjugative transposon that carries an ermG gene cross-hybridized with DNA from six of the seven porcine isolates, but the restriction patterns in the porcine strains were different from that of the Bacteroides conjugative transposon.


2014 ◽  
Vol 109 (7) ◽  
pp. 871-878 ◽  
Author(s):  
Luiza Pinheiro ◽  
Carla Ivo Brito ◽  
Valéria Cataneli Pereira ◽  
Adilson de Oliveira ◽  
Carlos Henrique Camargo ◽  
...  

2003 ◽  
Vol 185 (13) ◽  
pp. 3948-3957 ◽  
Author(s):  
Simonetta Bartolucci ◽  
Mosè Rossi ◽  
Raffaele Cannio

ABSTRACT LacS− mutants of Sulfolobus solfataricus defective in β-glycosidase activity were isolated in order to explore genomic instability and exploit novel strategies for transformation and complementation. One of the mutants showed a stable phenotype with no reversion; analysis of its chromosome revealed the total absence of the β-glycosidase gene (lacS). Fine mapping performed in comparison to the genomic sequence of S. solfataricus P2 indicated an extended deletion of ∼13 kb. The sequence analysis also revealed that this chromosomal rearrangement was a nonconservative transposition event driven by the mobile insertion sequence element ISC1058. In order to complement the LacS− phenotype, an expression vector was constructed by inserting the lacS coding sequence with its 5′ and 3′ flanking regions into the pEXSs plasmid. Since no transformant could be recovered by selection on lactose as the sole nutrient, another plasmid construct containing a larger genomic fragment was tested for complementation; this region also comprised the lacTr (lactose transporter) gene encoding a putative membrane protein homologous to the major facilitator superfamily. Cells transformed with both genes were able to form colonies on lactose plates and to be stained with the β-glycosidase chromogenic substrate X-Gal (5-bromo-4-chloro-3-indoyl-β-d-galactopyranoside).


1993 ◽  
Vol 175 (1) ◽  
pp. 141-147 ◽  
Author(s):  
A van der Zee ◽  
C Agterberg ◽  
M van Agterveld ◽  
M Peeters ◽  
F R Mooi

Sign in / Sign up

Export Citation Format

Share Document