Omega sign: An indicator of motor hand area on cerebral hemisphere

2021 ◽  
Vol 70 (2) ◽  
pp. 81
Author(s):  
ShilpaNandkishor Gosavi ◽  
RajendraSomnath Garud
1984 ◽  
Vol 246 (6) ◽  
pp. R884-R887
Author(s):  
N. Helm-Estabrooks

It is understood that damage to the left cerebral hemisphere in adulthood may result in syndromes of language disturbances called the aphasias. The study of these syndromes sheds light on normal language processes, the relationship between language behavior and the brain, and how best to treat aphasic individuals. Aphasia, for some, is a central communication disorder affecting all symbolic behavior in all modalities (i.e., speech, writing, and gesture). Difficulty producing symbolic gestures on command is called apraxia. Others view aphasia as a manifestation of a motor-sequencing disorder affecting all gestural systems including those required for speech movements. These divergent theories of the underlying nature of aphasia can be tested through examination of deaf individuals who use sign language before onset of aphasia. Poizner et al. [Am. J. Physiol. 246 (Regulatory Integrative Comp. Physiol. 15): R868-R883, 1984] studied three such patients with different aphasia syndromes: one patient had a nonsymbolic, motor-sequencing disorder; one had a gestural apraxia; and one had neither. These findings force the conclusion that neither the symbolic nor motor-sequencing theory of aphasia can account for the many varieties of that disorder.


1977 ◽  
Vol 4 (1) ◽  
pp. 15-19 ◽  
Author(s):  
Michael A. Corner ◽  
Herms J. Romijn ◽  
Anthony P.J. Richter

2008 ◽  
Vol 276 (1657) ◽  
pp. 667-673 ◽  
Author(s):  
Darla K Zelenitsky ◽  
François Therrien ◽  
Yoshitsugu Kobayashi

This research presents the first quantitative evaluation of the olfactory acuity in extinct theropod dinosaurs. Olfactory ratios (i.e. the ratio of the greatest diameter of the olfactory bulb to the greatest diameter of the cerebral hemisphere) are analysed in order to infer the olfactory acuity and behavioural traits in theropods, as well as to identify phylogenetic trends in olfaction within Theropoda. A phylogenetically corrected regression of olfactory ratio to body mass reveals that, relative to predicted values, the olfactory bulbs of (i) tyrannosaurids and dromaeosaurids are significantly larger, (ii) ornithomimosaurs and oviraptorids are significantly smaller, and (iii) ceratosaurians, allosauroids, basal tyrannosauroids, troodontids and basal birds are within the 95% CI. Relative to other theropods, olfactory acuity was high in tyrannosaurids and dromaeosaurids and therefore olfaction would have played an important role in their ecology, possibly for activities in low-light conditions, locating food, or for navigation within large home ranges. Olfactory acuity was the lowest in ornithomimosaurs and oviraptorids, suggesting a reduced reliance on olfaction and perhaps an omnivorous diet in these theropods. Phylogenetic trends in olfaction among theropods reveal that olfactory acuity did not decrease in the ancestry of birds, as troodontids, dromaeosaurids and primitive birds possessed typical or high olfactory acuity. Thus, the sense of smell must have remained important in primitive birds and its presumed decrease associated with the increased importance of sight did not occur until later among more derived birds.


2019 ◽  
Vol 121 (1) ◽  
pp. 152-162 ◽  
Author(s):  
Nicholas Paul Holmes ◽  
Luigi Tamè

Transcranial magnetic stimulation (TMS) over human primary somatosensory cortex (S1), unlike over primary motor cortex (M1), does not produce an immediate, objective output. Researchers must therefore rely on one or more indirect methods to position the TMS coil over S1. The “gold standard” method of TMS coil positioning is to use individual functional and structural magnetic resonance imaging (f/sMRI) alongside a stereotactic navigation system. In the absence of these facilities, however, one common method used to locate S1 is to find the scalp location that produces twitches in a hand muscle (e.g., the first dorsal interosseus, M1-FDI) and then move the coil posteriorly to target S1. There has been no systematic assessment of whether this commonly reported method of finding the hand area of S1 is optimal. To do this, we systematically reviewed 124 TMS studies targeting the S1 hand area and 95 fMRI studies involving passive finger and hand stimulation. Ninety-six TMS studies reported the scalp location assumed to correspond to S1-hand, which was on average 1.5–2 cm posterior to the functionally defined M1-hand area. Using our own scalp measurements combined with similar data from MRI and TMS studies of M1-hand, we provide the estimated scalp locations targeted in these TMS studies of the S1-hand. We also provide a summary of reported S1 coordinates for passive finger and hand stimulation in fMRI studies. We conclude that S1-hand is more lateral to M1-hand than assumed by the majority of TMS studies.


Neurosurgery ◽  
1984 ◽  
Vol 15 (4) ◽  
pp. 572-577 ◽  
Author(s):  
Roberto C. Heros ◽  
Sastry Kolluri

Abstract Two cases of giant left middle cerebral artery aneurysm presenting with rapidly progressing hemiparesis and aphasia are presented. In both, the computed tomographic scan showed recent intraaneurysmal thrombosis and massive edema and swelling of the cerebral hemisphere. There was no evidence of recent hemorrhage in either case. In both patients, surgical resection of the aneurysm was accomplished, but the outcome was disastrous. The literature is reviewed and the possible mechanisms responsible for brain swelling in these cases are discussed.


Sign in / Sign up

Export Citation Format

Share Document