scholarly journals Oral versus intravenous iron therapy in iron deficiency anemia: An observational study

2020 ◽  
Vol 9 (7) ◽  
pp. 3619
Author(s):  
PravatK Thatoi ◽  
SamarendraN Das ◽  
Amruta Devi ◽  
BibhutiB Mohanta ◽  
Anurag Choudhury ◽  
...  
2011 ◽  
Vol 3 (1) ◽  
pp. 25-27 ◽  
Author(s):  
Shahnaz Kouser ◽  
Shaheen Kouser ◽  
Mariam Malik ◽  
Ahmad Malik

ABSTRACT Objective This prospective study was conducted to establish safety and efficacy of intravenous iron therapy in postnatal anemic patients. Results Around 217 anemic women were included in the study. Most of these patients (82.2%) were of 21 to 30 years of age having parity of 2 to 4 (53.9%). Almost 71% of patients had moderate anemia with Hb of 7 to 9 gm/dl. Around 208 patients (95.86%) required two to four injections of intravenous iron to build up Hb to optimum acceptable level. Only seven patients (3.22%) suffered from minor complications of local rash, while three (1.38%) had more severe allergic reactions but were managed successfully. Conclusion Intravenous iron is a safe and effective alternative in postnatal patients as it ensures iron therapy in low resource and noncompliant patients.


2008 ◽  
Vol 21 (6) ◽  
pp. 431-443 ◽  
Author(s):  
Scott B. Silverstein ◽  
Jeffrey A. Gilreath ◽  
George M. Rodgers

Iron replacement for iron-deficiency anemia has historically been accomplished with the use of oral iron therapy. Although oral iron is appropriate for most iron-deficiency anemia patients, many patients do not respond to or may be intolerant of oral iron, or may experience bleeding of sufficient magnitude to require higher iron doses than that achievable with oral iron. Intravenous iron therapy is a useful option for these latter patients. Three intravenous iron products are recommended: low-molecular weight iron dextran (INFeD), ferric gluconate (Ferrlecit), and iron sucrose (Venofer). These intravenous iron products have superior safety profiles compared to high-molecular weight iron dextran. The Food and Drug Administration's approval of erythropoietic-stimulating agents to treat certain types of anemia has increased usage of intravenous iron for functional iron deficiency. This review summarizes the current status of intravenous iron products and discusses their advantages and disadvantages in treating both absolute and functional iron deficiency.


Author(s):  
Muzafar Naik ◽  
Tariq Bhat ◽  
Ummer Jalalie ◽  
Arif Bhat ◽  
Mir Waseem ◽  
...  

Background: Low dose (200 mg) extended Intravenous iron sucrose remains the most common treatment option in patients who are intolerant to oral iron therapy in patients with Iron deficiency anemia (IDA). The objective of this study was to evaluate the efficacy and safety of high dose accelerated intravenous iron sucrose (IS) in the treatment of adults with iron deficiency anemiaMethods: One hundred adult patients with iron deficiency anemia, who had intolerance or showed no effect with oral iron therapy, received daily doses of 500 mg of intravenous iron sucrose until the hemoglobin level was corrected or until receiving the total dose of intravenous iron calculated for each patient.Results: The mean and median Hb (g/dL) 6.47±1.656 and 6.6 (2) at baseline, 9.61±1.629 and 9.6 (2) at 2 weeks of treatment, 11.85±1.277 and 12 (1) at 4 weeks of treatment respectively. The mean rise of Hb was 3.13±1.41 and 5.37±1.50 after 2 and 4 weeks of treatment respectively (p<0.000). A total of 303 intravenous infusions of iron sucrose were administered and iron sucrose was generally well tolerated with twenty-six patients developing mild and one patient developing moderate adverse drug reactions. There was no serious adverse event recorded.Conclusions: Accelerated high dose intravenous iron sucrose is a safe and cost effective option minimizing frequent hospital visits in the treatment of adults with iron deficiency anemia who are intolerant or lack satisfactory response to oral iron therapy.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 484-484
Author(s):  
Lawrence T. Goodnough ◽  
David Morris ◽  
Todd Koch ◽  
Andy He ◽  
David Bregman

Abstract Abstract 484 Background Treatment options for individuals diagnosed with iron deficiency anemia (IDA) include oral or intravenous iron. Oral iron may not increase patient hemoglobin levels adequately, due to poor compliance and/or suboptimal gastrointestinal absorption due to inflammation-mediated induction of hepcidin, which regulates iron homeostasis. This study evaluated whether hepcidin levels can be used to identify patients with IDA who are unresponsive to oral iron therapy. Methods Hepcidin levels were assessed in a subset of subjects enrolled in a randomized trial comparing oral iron (ferrous sulfate) to intravenous iron (Injectafer®[ferric carboxymaltose, FCM]) in subjects with IDA (Hemoglobin [Hb] ≤ 11 g/dL; and ferritin ≤ 100 ng/mL, or ≤ 300 ng/mL when transferrin saturation (TSAT) was ≤ 30%) (Szczech et al Amer Soc Nephrol 2011; 22:405A). Subjects who met the inclusion criteria underwent a 14-day (run-in) course of ferrous sulfate 325 mg, three times per day. Subjects with an increase in Hb ≥ 1 g/dL were considered to be “responders” and not randomized. “Non-responders” were randomized to ferric carboxymaltose (2 injections of 750 mg given on Day 0 [day of randomization] and Day 7) or oral iron for 14 more days. Hb levels and markers of iron status were assessed at screening (day-15), day-1 and day 35. Hepcidin levels were analyzed at screening (Day -15) in an initial Cohort (I) of 44 patients, 22 responders and 22 non-responders. A hepcidin value of >20 ng/mL was identified for further analysis for predictive values for non-responsiveness to 14 day oral iron run-in in 240 patients (Cohort II). Hepcidin levels were also analyzed at Day -1 and Day 35 in a Cohort (III) of patients who were then randomized to FCM vs. oral iron therapy. Results Hepcidin screening levels in Cohort I were significantly higher in the non-responders vs. responders (33.2 vs. 8.7 ng/mL, p < 0.004). Twenty one of 22 non-responders had hepcidin values > 20 ng/mL. For Cohort II, mean hepcidin levels were again significantly higher in the non-responders vs. responders (38.4 vs. 11.3 ng/mL, p = 0.0002). Utilizing a hepcidin criterion of > 20 ng/mL, we found a sensitivity of 41.3% (26 of 150), specificity of 84.4% (76 of 90), and a positive predictive value (PPV) of 81.6% (62 of 76) for non-responsiveness to oral iron (Figure: The Receiver Operator Characteristic curves present plots of sensitivity vs. (1-specificity) for hepcidin, ferritin, and TSAT at the various cutoff levels indicated near the respective curves in the same color as the respective curves). While ferritin < 30ng/mL or TSAT <15% had greater sensitivity (77.3% and 64.7%, respectively), their PPVs (59.2% and 55%) were inferior to PPVs for hepcidin. Patients subsequently randomized to FCM vs. oral iron responded with Hgb increases of ≥1 g/dL for 65.3% vs. 20.8% (p <0.0001)and mean Hgb increases of 1.7 ± 1.3 vs. 0.6 ± 0.9 g/dL (p = 0.0025), respectively. Conclusion Our analysis provides evidence that non-responsiveness to oral iron in patients with iron deficiency anemia can be predicted from patients' baseline hepcidin levels, which have superior positive predictive values compared to transferrin saturation or ferritin levels. Furthermore, non-response to oral iron therapy does not rule out iron deficiency, since two thirds of these non-responders to oral iron responded to IV iron. Disclosures: Goodnough: Luitpold: Consultancy. Off Label Use: ferric carboxymaltose for treatment of iron deficiency anemia. Morris:Luitpold: Consultancy. Koch:Luitpold: Employment. He:Luitpold: Employment. Bregman:Luitpold: Employment.


Sign in / Sign up

Export Citation Format

Share Document