scholarly journals Analysis of Automatically Switched Optical Network (ASON) Protection System in Jakarta – Bogor Fiber-Optic Transmission Link

Author(s):  
Dika Fadilah Abduhuu ◽  
Peby Wahyu Purnawan
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Esteban Gonzalez-Valencia ◽  
Ignacio Del Villar ◽  
Pedro Torres

AbstractWith the goal of ultimate control over the light propagation, photonic crystals currently represent the primary building blocks for novel nanophotonic devices. Bloch surface waves (BSWs) in periodic dielectric multilayer structures with a surface defect is a well-known phenomenon, which implies new opportunities for controlling the light propagation and has many applications in the physical and biological science. However, most of the reported structures based on BSWs require depositing a large number of alternating layers or exploiting a large refractive index (RI) contrast between the materials constituting the multilayer structure, thereby increasing the complexity and costs of manufacturing. The combination of fiber–optic-based platforms with nanotechnology is opening the opportunity for the development of high-performance photonic devices that enhance the light-matter interaction in a strong way compared to other optical platforms. Here, we report a BSW-supporting platform that uses geometrically modified commercial optical fibers such as D-shaped optical fibers, where a few-layer structure is deposited on its flat surface using metal oxides with a moderate difference in RI. In this novel fiber optic platform, BSWs are excited through the evanescent field of the core-guided fundamental mode, which indicates that the structure proposed here can be used as a sensing probe, along with other intrinsic properties of fiber optic sensors, as lightness, multiplexing capacity and easiness of integration in an optical network. As a demonstration, fiber optic BSW excitation is shown to be suitable for measuring RI variations. The designed structure is easy to manufacture and could be adapted to a wide range of applications in the fields of telecommunications, environment, health, and material characterization.


2021 ◽  
Vol 61 ◽  
pp. 102422
Author(s):  
Amit Kumar Garg ◽  
Vijay Janyani ◽  
Bostjan Batagelj ◽  
N.H. Zainol Abidin ◽  
M.H. Abu Bakar

2001 ◽  
Vol 72 (9) ◽  
pp. 3687-3690 ◽  
Author(s):  
Collin J. McKinney ◽  
Hugon J. Karwowski

Author(s):  
Ved Nath Jha, Supriya Rani, Ved Nath Jha

In the fiber optic communication network for example,- FTTH, EPON, NBN, OTN and so on, the most important components are fiber length between transmitter and receiver point. So, to make, cheap and meaningful communication through optical fiber it must be required to calculate how and what amount of signal is transmitted with the given length of the fiber. Finally, it is said that the optical fiber network have several limitations like extension ratio. So, it is necessary to investigate its affect on the performance of the Optical Network. This research is based on simulation by OptiSystem 0.17 on the basis of Dense wavelength division multiplex (DWDM) technology, Erbium Doped Fiber Amplifier (EDFA), dispersion Compensating Fiber (DCF) and single mode fiber of length 50–100 km.


Sign in / Sign up

Export Citation Format

Share Document