scholarly journals A Wearable, Customizable, and Automated Auditory Cueing System to Stimulate Gait in Parkinson’s

Author(s):  
Vânia Guimarães ◽  
Francisco Nunes
Keyword(s):  
2019 ◽  
Vol 111 (2) ◽  
pp. 235-255 ◽  
Author(s):  
Heping Xie ◽  
Richard E. Mayer ◽  
Fuxing Wang ◽  
Zongkui Zhou

Author(s):  
Adam F. Werner ◽  
Jamie C. Gorman

Objective This study examines visual, auditory, and the combination of both (bimodal) coupling modes in the performance of a two-person perceptual-motor task, in which one person provides the perceptual inputs and the other the motor inputs. Background Parking a plane or landing a helicopter on a mountain top requires one person to provide motor inputs while another person provides perceptual inputs. Perceptual inputs are communicated either visually, auditorily, or through both cues. Methods One participant drove a remote-controlled car around an obstacle and through a target, while another participant provided auditory, visual, or bimodal cues for steering and acceleration. Difficulty was manipulated using target size. Performance (trial time, path variability), cue rate, and spatial ability were measured. Results Visual coupling outperformed auditory coupling. Bimodal performance was best in the most difficult task condition but also high in the easiest condition. Cue rate predicted performance in all coupling modes. Drivers with lower spatial ability required a faster auditory cue rate, whereas drivers with higher ability performed best with a lower rate. Conclusion Visual cues result in better performance when only one coupling mode is available. As predicted by multiple resource theory, when both cues are available, performance depends more on auditory cueing. In particular, drivers must be able to transform auditory cues into spatial actions. Application Spotters should be trained to provide an appropriate cue rate to match the spatial ability of the driver or pilot. Auditory cues can enhance visual communication when the interpersonal task is visual with spatial outputs.


Author(s):  
Vânia Guimarães ◽  
Rui Castro ◽  
Ana Barros ◽  
João Cevada ◽  
Àngels Bayés ◽  
...  

2019 ◽  
Vol 33 (6) ◽  
pp. 464-475 ◽  
Author(s):  
Lousin Moumdjian ◽  
Bart Moens ◽  
Pieter-Jan Maes ◽  
Johan Van Nieuwenhoven ◽  
Bart Van Wijmeersch ◽  
...  

Background. Mobility dysfunctions are prevalent in persons with multiple sclerosis (PwMS), thus novel rehabilitation mechanisms are needed toward functional training. The effect of auditory cueing is well-known in Parkinson’s disease, yet the application of different types of auditory stimuli at different tempi has not been investigated yet. Objectives. Investigating if PwMS, compared with healthy controls (HC), can synchronize their gait to music and metronomes at different tempi during walking and the effects of the stimuli on perceived fatigue and gait. Additionally, exploring if cognitive impairment would be a factor on the results. Methods. The experimental session consisted of 2 blocks, music and metronomes. Per block, participants walked 3 minutes per tempi, with instructions to synchronize their steps to the beat. The tempi were 0%, +2%, +4% +6%, +8%, +10% of preferred walking cadence (PWC). Results. A total of 28 PwMS and 29 HC participated. On average, participants were able to synchronize at all tempi to music and metronome. Higher synchronization was obtained for metronomes compared with music. The highest synchronization for music was found between +2% and +8% of PWC yet pwMS perceived less physical and cognitive fatigue walking to music compared with metronomes. Cognitive impaired PwMS (n = 9) were not able to synchronize at tempi higher than +6%. Conclusion. Auditory-motor coupling and synchronization was feasible in HC and PwMS with motor and cognitive impairments. PwMS walked at higher tempi than their preferred walking cadence, and lower fatigue perception with music. Coupling walking to music could be a promising functional walking training strategy.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Johanna Wagner ◽  
Ramon Martinez-Cancino ◽  
Arnaud Delorme ◽  
Scott Makeig ◽  
Teodoro Solis-Escalante ◽  
...  

Abstract In this report we present a mobile brain/body imaging (MoBI) dataset that allows study of source-resolved cortical dynamics supporting coordinated gait movements in a rhythmic auditory cueing paradigm. Use of an auditory pacing stimulus stream has been recommended to identify deficits and treat gait impairments in neurologic populations. Here, the rhythmic cueing paradigm required healthy young participants to walk on a treadmill (constant speed) while attempting to maintain step synchrony with an auditory pacing stream and to adapt their step length and rate to unanticipated shifts in tempo of the pacing stimuli (e.g., sudden shifts to a faster or slower tempo). High-density electroencephalography (EEG, 108 channels), surface electromyography (EMG, bilateral tibialis anterior), pressure sensors on the heel (to register timing of heel strikes), and goniometers (knee, hip, and ankle joint angles) were concurrently recorded in 20 participants. The data is provided in the Brain Imaging Data Structure (BIDS) format to promote data sharing and reuse, and allow the inclusion of the data into fully automated data analysis workflows.


Sign in / Sign up

Export Citation Format

Share Document