scholarly journals A Comprehensive Survey on Intrusion Detection based Machine Learning for IoT Networks

Author(s):  
Hela Mliki ◽  
Abir Kaceam ◽  
Lamia Chaari
2019 ◽  
Vol 7 (2) ◽  
pp. 148-156
Author(s):  
K. Narayana Rao(Research Scholar) ◽  
Prof. K. Venkata Rao ◽  
Prof. Prasad Reddy P.V.G.D

2021 ◽  
Author(s):  
Md. Rayhan Ahmed ◽  
salekul Islam ◽  
Swakkhar Shatabda ◽  
A. K. M. Muzahidul Islam ◽  
Md. Towhidul Islam Robin

<div>At present, the Internet is facing numerous attacks of different kinds that put its data at risk. The safety of information within the network is, therefore, a significant concern. In order to prevent the loss of incredibly valuable information, the Intrusion Detection System (IDS) was developed to recognize the outbreak of a stream of attacks and notify the network system administrator providing network security. IDS is an extrapolative model used to detect network traffic as routine or attack. Software-Defined Networks (SDN) is a revolutionary paradigm that isolates the control plane from the data plane, transforming the concept of a software-driven network. Through this data and control plane separation, SDN provides us the opportunity to create a manageable and programmable network, allowing applications in the top plane to access physical devices via the controller. The controller functioning inside the control plane executes network modules and establishes flow rules to forward packets in the switches residing in the data plane. Cyber attackers target the SDN controller to subdue the control plane, which is considered the brain of the SDN, providing a plethora of functionalities such as regulating flow control to switches or routers in the data plane below via southbound Application Programming Interfaces (APIs) and business and application logic in the application plane above via northbound APIs to implement sophisticated networks. However, the control plane becomes a tempting prospect for security attacks from adversaries because of its centralization feature. This paper includes an in-depth overview of the notable published articles from 2015 to 2021 that used Machine Learning (ML) and Deep Learning (DL) techniques to construct an IDS solution to provide security for SDN. We also present two detailed taxonomic studies regarding IDS, and ML-DL techniques based on their learning categories, exploring various IDS solutions to secure the SDN paradigm. We have also conducted brief research on a few benchmark datasets used to construct IDS in the SDN paradigm. To conclude the survey, we provide a discussion that sheds light on continuous challenges and IDS issues for SDN security.</div>


2021 ◽  
Author(s):  
Md. Rayhan Ahmed ◽  
salekul Islam ◽  
Swakkhar Shatabda ◽  
A. K. M. Muzahidul Islam ◽  
Md. Towhidul Islam Robin

<div>At present, the Internet is facing numerous attacks of different kinds that put its data at risk. The safety of information within the network is, therefore, a significant concern. In order to prevent the loss of incredibly valuable information, the Intrusion Detection System (IDS) was developed to recognize the outbreak of a stream of attacks and notify the network system administrator providing network security. IDS is an extrapolative model used to detect network traffic as routine or attack. Software-Defined Networks (SDN) is a revolutionary paradigm that isolates the control plane from the data plane, transforming the concept of a software-driven network. Through this data and control plane separation, SDN provides us the opportunity to create a manageable and programmable network, allowing applications in the top plane to access physical devices via the controller. The controller functioning inside the control plane executes network modules and establishes flow rules to forward packets in the switches residing in the data plane. Cyber attackers target the SDN controller to subdue the control plane, which is considered the brain of the SDN, providing a plethora of functionalities such as regulating flow control to switches or routers in the data plane below via southbound Application Programming Interfaces (APIs) and business and application logic in the application plane above via northbound APIs to implement sophisticated networks. However, the control plane becomes a tempting prospect for security attacks from adversaries because of its centralization feature. This paper includes an in-depth overview of the notable published articles from 2015 to 2021 that used Machine Learning (ML) and Deep Learning (DL) techniques to construct an IDS solution to provide security for SDN. We also present two detailed taxonomic studies regarding IDS, and ML-DL techniques based on their learning categories, exploring various IDS solutions to secure the SDN paradigm. We have also conducted brief research on a few benchmark datasets used to construct IDS in the SDN paradigm. To conclude the survey, we provide a discussion that sheds light on continuous challenges and IDS issues for SDN security.</div>


Author(s):  
M. Ilayaraja ◽  
S. Hemalatha ◽  
P. Manickam ◽  
K. Sathesh Kumar ◽  
K. Shankar

Cloud computing is characterized as the arrangement of assets or administrations accessible through the web to the clients on their request by cloud providers. It communicates everything as administrations over the web in view of the client request, for example operating system, organize equipment, storage, assets, and software. Nowadays, Intrusion Detection System (IDS) plays a powerful system, which deals with the influence of experts to get actions when the system is hacked under some intrusions. Most intrusion detection frameworks are created in light of machine learning strategies. Since the datasets, this utilized as a part of intrusion detection is Knowledge Discovery in Database (KDD). In this paper detect or classify the intruded data utilizing Machine Learning (ML) with the MapReduce model. The primary face considers Hadoop MapReduce model to reduce the extent of database ideal weight decided for reducer model and second stage utilizing Decision Tree (DT) classifier to detect the data. This DT classifier comprises utilizing an appropriate classifier to decide the class labels for the non-homogeneous leaf nodes. The decision tree fragment gives a coarse section profile while the leaf level classifier can give data about the qualities that influence the label inside a portion. From the proposed result accuracy for detection is 96.21% contrasted with existing classifiers, for example, Neural Network (NN), Naive Bayes (NB) and K Nearest Neighbor (KNN).


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4736
Author(s):  
Sk. Tanzir Mehedi ◽  
Adnan Anwar ◽  
Ziaur Rahman ◽  
Kawsar Ahmed

The Controller Area Network (CAN) bus works as an important protocol in the real-time In-Vehicle Network (IVN) systems for its simple, suitable, and robust architecture. The risk of IVN devices has still been insecure and vulnerable due to the complex data-intensive architectures which greatly increase the accessibility to unauthorized networks and the possibility of various types of cyberattacks. Therefore, the detection of cyberattacks in IVN devices has become a growing interest. With the rapid development of IVNs and evolving threat types, the traditional machine learning-based IDS has to update to cope with the security requirements of the current environment. Nowadays, the progression of deep learning, deep transfer learning, and its impactful outcome in several areas has guided as an effective solution for network intrusion detection. This manuscript proposes a deep transfer learning-based IDS model for IVN along with improved performance in comparison to several other existing models. The unique contributions include effective attribute selection which is best suited to identify malicious CAN messages and accurately detect the normal and abnormal activities, designing a deep transfer learning-based LeNet model, and evaluating considering real-world data. To this end, an extensive experimental performance evaluation has been conducted. The architecture along with empirical analyses shows that the proposed IDS greatly improves the detection accuracy over the mainstream machine learning, deep learning, and benchmark deep transfer learning models and has demonstrated better performance for real-time IVN security.


Author(s):  
Md Arafatur Rahman ◽  
A. Taufiq Asyhari ◽  
Ong Wei Wen ◽  
Husnul Ajra ◽  
Yussuf Ahmed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document