scholarly journals Application of the SWAT hydrological model in flow and solid discharge simulation as a management tool of the Indaia River Basin, Alto São Francisco, Minas Gerais

Author(s):  
Kauem Simões ◽  
Rita De Cássia Cerqueira Condé ◽  
Henrique Llacer Roig ◽  
Rejane Ennes Cicerelli

Measurement and evaluation of soil erosion and consequent sediment yield are fundamental in the planning and management of watersheds, as they allow the identification of critical areas susceptible to erosive processes. This study analyzed the sediment yield generated by water erosion in the Indaia River Basin, Alto São Francisco, Minas Gerais, by using the SWAT hydrological model. From a regional/local scale, the initial simulation of the variables (flow and solid discharge) was performed on a monthly scale from 1988 to 2017. Then, parameter-sensitivity analysis, calibration, and validation of the model were executed. In the monthly calibration (1988 to 2007), the performance of the simulations for flow was R2=0.92 and NSE=0.91 and for total solid discharge R2=0.51 and NSE=0.50. In the monthly validation (2008 to 2017) for flow, R2=0.85 and NSE=0.82 was obtained and for total solid discharge R2=0.19 and NSE=0.16. Despite the unsatisfactory result in the validation stage, the model was able to analyze the distribution of sediment production by sub-basins or even by the Hydrologic Response Unit (HRU). Therefore, a sediment-yield map was generated which qualitatively indicated a tendency for greater erosive processes in the central portion of the basin. The results will support public policies mitigating environmental degradation of the Indaia River Basin.

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 483
Author(s):  
Ümit Yıldırım ◽  
Cüneyt Güler ◽  
Barış Önol ◽  
Michael Rode ◽  
Seifeddine Jomaa

This study investigates the impacts of climate change on the hydrological response of a Mediterranean mesoscale catchment using a hydrological model. The effect of climate change on the discharge of the Alata River Basin in Mersin province (Turkey) was assessed under the worst-case climate change scenario (i.e., RCP8.5), using the semi-distributed, process-based hydrological model Hydrological Predictions for the Environment (HYPE). First, the model was evaluated temporally and spatially and has been shown to reproduce the measured discharge consistently. Second, the discharge was predicted under climate projections in three distinct future periods (i.e., 2021–2040, 2046–2065 and 2081–2100, reflecting the beginning, middle and end of the century, respectively). Climate change projections showed that the annual mean temperature in the Alata River Basin rises for the beginning, middle and end of the century, with about 1.35, 2.13 and 4.11 °C, respectively. Besides, the highest discharge timing seems to occur one month earlier (February instead of March) compared to the baseline period (2000–2011) in the beginning and middle of the century. The results show a decrease in precipitation and an increase in temperature in all future projections, resulting in more snowmelt and higher discharge generation in the beginning and middle of the century scenarios. However, at the end of the century, the discharge significantly decreased due to increased evapotranspiration and reduced snow depth in the upstream area. The findings of this study can help develop efficient climate change adaptation options in the Levant’s coastal areas.


2021 ◽  
Author(s):  
Yangyang Wang ◽  
Wu Ma ◽  
Lenny D Farlee ◽  
Elizabeth A Jackson ◽  
Guofan Shao ◽  
...  

Abstract Stand improvement (SI) has been widely accepted as an effective forest management tool. Yet most studies on its economic feasibility for nonindustrial private forest (NIPF) landowners are outdated and focus on the single stand level. The objective of this study was to conduct an economic assessment of SI’s effects and feasibility in hardwood stands for a case study in the White River Basin in Indiana. It is shown that SI could make these forests more productive and sustainable than the prevalent “hands-off” practice by enhancing the timber value of the residual stand (TV), generating regular timber income, and to some degree, reversing the decline in oak dominance. On average, a 25% increment in the TV could be achieved. Although costly for some NIPFs, once combined with voluntary financial incentive programs, SI could meet landowners’ demands for low-cost, high-return investment options. In particular, participation in the Environmental Quality Incentive Program could, on average, increase the net present value of timber income from thinning activities by nearly $1,600 per hectare over the course of 30 years. The spatial analysis revealed that there existed considerable spatial heterogeneity in SI benefits and impacts, suggesting that public incentive programs should be spatially targeted to achieve greater efficiency. Study Implications This study found that stand improvement (SI) could significantly improve the timber value of forestland in the central hardwood region. Participation in voluntary conservation programs, such as the Environmental Quality Incentive Program, could alleviate part of the SI cost thus making it an attractive investment opportunity for private landowners. For the study region, the White River Basin in Indiana, the results suggested that there existed substantial variations in SI’s effectiveness across space. This implied that program administrators of voluntary incentives could improve the efficiency of public funds allocation by considering this spatial variation when evaluating landowners’ applications for incentives.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 39 ◽  
Author(s):  
Lifeng Yuan ◽  
Kenneth J. Forshay

Soil erosion and lake sediment loading are primary concerns of watershed managers around the world. In the Xinjiang River Basin of China, severe soil erosion occurs primarily during monsoon periods, resulting in sediment flow into Poyang Lake and subsequently causing lake water quality deterioration. Here, we identified high-risk soil erosion areas and conditions that drive sediment yield in a watershed system with limited available data to guide localized soil erosion control measures intended to support reduced sediment load into Poyang Lake. We used the Soil and Water Assessment Tool (SWAT) model to simulate monthly and annual sediment yield based on a calibrated SWAT streamflow model, identified where sediment originated, and determined what geographic factors drove the loading within the watershed. We applied monthly and daily streamflow discharge (1985–2009) and monthly suspended sediment load data (1985–2001) to Meigang station to conduct parameter sensitivity analysis, calibration, validation, and uncertainty analysis of the model. The coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE), percent bias (PBIAS), and RMSE -observation’s standard deviation ratio (RSR) values of the monthly sediment load were 0.63, 0.62, 3.8%, and 0.61 during calibration, respectively. Spatially, the annual sediment yield rate ranged from 3 ton ha−1year−1 on riparian lowlands of the Xinjiang main channel to 33 ton ha−1year−1 on mountain highlands, with a basin-wide mean of 19 ton ha−1year−1. The study showed that 99.9% of the total land area suffered soil loss (greater than 5 ton ha−1year−1). More sediment originated from the southern mountain highlands than from the northern mountain highlands of the Xinjiang river channel. These results suggest that specific land use types and geographic conditions can be identified as hotspots of sediment source with relatively scarce data; in this case, orchards, barren lands, and mountain highlands with slopes greater than 25° were the primary sediment source areas. This study developed a reliable, physically-based streamflow model and illustrates critical source areas and conditions that influence sediment yield.


2013 ◽  
Vol 71 (9) ◽  
pp. 4177-4186 ◽  
Author(s):  
Aline Sueli de Lima Rodrigues ◽  
Guilherme Malafaia ◽  
Adivane Terezinha Costa ◽  
Hermínio Arias Nalini Júnior

2015 ◽  
Vol 24 (2) ◽  
pp. 129-135 ◽  
Author(s):  
Danielle Priscilla Correia Costa ◽  
Cassandra Moraes Monteiro ◽  
Marilia Carvalho Brasil-Sato

A total of 103 specimens of Hoplias intermedius (Günther, 1864) and 86 specimens of H. malabaricus (Bloch, 1794) from the upper São Francisco River, State of Minas Gerais were collected between April 2011 and August 2013, and their parasitic fauna were investigated. Four species of Digenea were found: metacercariae of Austrodiplostomum sp., and Ithyoclinostomum sp.; and adult specimens of Phyllodistomum spatula Odhner, 1902, and Pseudosellacotyla lutzi (Freitas, 1941) Yamaguti, 1954. The prevalence of the metacercariae was higher than that of the adult digeneans of erythrinids from the upper São Francisco River as a result of piscivorous feeding habits of these adult erythrinids. The presence of metacercariae and adult digeneans indicate that they act as intermediate and definitive hosts, respectively, in their biological cycles. Hoplias intermedius is a new host for the four species of Digenea, and the São Francisco River basin is a new location for the known geographical distributions of P. spatula and P. lutzi.


Sign in / Sign up

Export Citation Format

Share Document