Assessment of Gully Erosion and Estimation of Sediment Yield in Siddheswari River Basin, Eastern India, Using SWAT Model

Author(s):  
Amit Bera ◽  
Bhabani Prasad Mukhopadhyay ◽  
Swagata Biswas
Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3503
Author(s):  
Ty Sok ◽  
Chantha Oeurng ◽  
Ilan Ich ◽  
Sabine Sauvage ◽  
José Miguel Sánchez-Pérez

The Mekong River Basin (MRB) in Southeast Asia is among the world’s ten largest rivers, both in terms of its discharge and sediment load. The spatial and temporal resolution to accurately determine the sediment load/yield from tributaries and sub-basin that enters the Mekong mainstream still lacks from the large-scale model. In this study, the SWAT model was applied to the MRB to assess long-term basin hydrology and to quantify the sediment load and spatial sediment yield in the MRB. The model was calibrated and validated (1985–2016) at a monthly time step. The overall proportions of streamflow in the Mekong River were 34% from surface runoff, 21% from lateral flow, 45% from groundwater contribution. The average annual sediments yield presented 1295 t/km2/year in the upper part of the basin, 218 t/km2/year in the middle, 78 t/km2/year in the intensive agricultural area and 138 t/km2/year in the highland area in the lower part. The annual average sediment yield for the Mekong River was 310 t/km2/year from upper 80% of the total MRB before entering the delta. The derived sediment yield and a spatial soil erosion map can explicitly illustrate the identification and prioritization of the critical soil erosion-prone areas of the MR sub-basins.


Author(s):  
J. Y. G. Santos ◽  
R. M. Silva ◽  
J. G. Carvalho Neto ◽  
S. M. G. L. Montenegro ◽  
C. A. G. Santos ◽  
...  

Abstract. This study assesses the impact of the land use and climate changes between 1967–2008 on the streamflow and sediment yield in Tapacurá River basin (Brazil) using the Soil and Water Assessment Tool (SWAT) model. The model was calibrated and validated by comparing simulated mean monthly streamflow with observed long-term mean monthly streamflow. The obtained R2 and Nash–Sutcliffe efficiency values to streamflow data were respectively 0.82 and 0.71 for 1967–1974, and 0.84 and 0.82 for 1995–2008. The results show that the land cover and climate change affected the basin hydrology, decreasing the streamflow and sediment yield (227.39 mm and 18.21 t ha−1 yr−1 for 1967–1974 and 182.86 mm and 7.67 t ha−1 yr−1 for 1995–2008). The process changes are arising mainly due to the land cover/use variability, but, mainly due to the decreasing in the rainfall rates during 1995–2008 when compared with the first period analysed, which in turn decreased the streamflow and sediments during the wet seasons and reduced the base flow during the dry seasons.


Sign in / Sign up

Export Citation Format

Share Document