scholarly journals Diversity of Breast Carcinoma: Histological Subtypes and Clinical Relevance

2015 ◽  
Vol 8 ◽  
pp. CPath.S31563 ◽  
Author(s):  
Jaafar Makki

Mammary carcinoma is the most common malignant tumor in women, and it is the leading cause of mortality, with an incidence of ≥1,000,000 cases occurring worldwide annually. It is one of the most common human neoplasms, accounting for approximately one-quarter of all cancers in females worldwide and 27% of cancers in developed countries with a Western lifestyle. They exhibit a wide scope of morphological features, different immunohistochemical profiles, and unique histopathological subtypes that have specific clinical course and outcome. Breast cancers can be classified into distinct subgroups based on similarities in the gene expression profiles and molecular classification.

2010 ◽  
Vol 9 ◽  
pp. CIN.S3794 ◽  
Author(s):  
Xiaosheng Wang ◽  
Osamu Gotoh

Gene selection is of vital importance in molecular classification of cancer using high-dimensional gene expression data. Because of the distinct characteristics inherent to specific cancerous gene expression profiles, developing flexible and robust feature selection methods is extremely crucial. We investigated the properties of one feature selection approach proposed in our previous work, which was the generalization of the feature selection method based on the depended degree of attribute in rough sets. We compared the feature selection method with the established methods: the depended degree, chi-square, information gain, Relief-F and symmetric uncertainty, and analyzed its properties through a series of classification experiments. The results revealed that our method was superior to the canonical depended degree of attribute based method in robustness and applicability. Moreover, the method was comparable to the other four commonly used methods. More importantly, the method can exhibit the inherent classification difficulty with respect to different gene expression datasets, indicating the inherent biology of specific cancers.


Author(s):  
Duccio Cavalieri ◽  
Piero Dolara ◽  
Enrico Mini ◽  
Cristina Luceri ◽  
Cinzia Castagnini ◽  
...  

2010 ◽  
Vol 110 (2) ◽  
pp. 125-129 ◽  
Author(s):  
YuanYang Yao ◽  
YongHua Chen ◽  
Yue Wang ◽  
XiaoPing Li ◽  
JianLiu Wang ◽  
...  

2001 ◽  
Vol 159 (4) ◽  
pp. 1231-1238 ◽  
Author(s):  
Thomas J. Giordano ◽  
Kerby A. Shedden ◽  
Donald R. Schwartz ◽  
Rork Kuick ◽  
Jeremy M.G. Taylor ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Peiling Xie ◽  
Rui An ◽  
Shibo Yu ◽  
Jianjun He ◽  
Huimin Zhang

Abstract Background The diversity and plasticity behind ER+/PR−/HER2− breast cancer have not been widely explored. It is essential to identify heterogeneous microenvironment phenotypes and investigate specific genomic events driving the formation of these phenotypes. Methods Based on the immune-related gene expression profiles of 411 ER+/PR−/HER2− breast cancers in the METABRIC cohort, we used consensus clustering to identify heterogeneous immune subtypes and assessed their reproducibility in an independent meta-cohort including 135 patients collected from GEO database. We further analyzed the differences of cellular and molecular characteristics, and potential immune escape mechanism among immune subtypes. In addition, we constructed a transcriptional trajectory to visualize the distribution of individual patient. Results Our analysis identified and validated five reproducible immune subtypes with distinct cellular and molecular characteristics, potential immune escape mechanisms, genomic drivers, as well as clinical outcomes. An immune-cold subtype, with the least amount of lymphocyte infiltration, had a poorer prognosis. By contrast, an immune-hot subtype, which demonstrated the highest infiltration of CD8+ T cells, DCs and NK cells, and elevated IFN-γ response, had a comparatively favorable prognosis. Other subtypes showed more diverse gene expression and immune infiltration patterns with distinct clinical outcomes. Finally, our analysis revealed a complex immune landscape consisting of both discrete cluster and continuous spectrum. Conclusion Overall, this study revealed five heterogeneous immune subtypes among ER+/PR–/HER2− breast cancer, also provided important implications for clinical translations.


Sign in / Sign up

Export Citation Format

Share Document