scholarly journals Effect of the Hot-Dipped Zn-Al Alloy Coating on Corrosion Fatigue Crack of the High Tensile Steel

2003 ◽  
Vol 54 (7) ◽  
pp. 483-487
Author(s):  
Naotsugu SHIRAISHI ◽  
Kazushige CHIBA ◽  
Yoshihiko HAGIWARA ◽  
Shinichi OHYA
2014 ◽  
Vol 891-892 ◽  
pp. 248-253 ◽  
Author(s):  
Rohan Byrnes ◽  
Noel Goldsmith ◽  
Mark Knop ◽  
Stan Lynch

The characteristics of corrosion-fatigue in age-hardened Al alloys, e.g. brittle striations on cleavage-like facets, are described, with reference to two examples of component failure. Mechanisms of corrosion fatigue (and explanations for fracture-surface features) are then reviewed. New observations of corrosion-fatigue crack growth for 7050-T7451 alloy compact-tension specimens tested in aqueous environments using a constant (intermediate) ΔK value but different cycle frequencies are then described and discussed. These observations provide additional support for a hydrogen-embrittlement process involving adsorption-induced dislocation-emission from crack tips.


1997 ◽  
Vol 119 (3) ◽  
pp. 249-254 ◽  
Author(s):  
L. A. James ◽  
T. A. Auten ◽  
T. J. Poskie ◽  
W. H. Cullen

Corrosion fatigue crack propagation tests were conducted on a medium-sulfur ASTM A508-2 forging steel overlaid with weld-deposited alloy EN82H cladding. The specimens featured semi-elliptical surface cracks penetrating approximately 6.3 mm of cladding into the underlying steel. The initial crack sizes were relatively large with surface lengths of 30.3–38.3 mm, and depths of 13.1–16.8 mm. The experiments were conducted in a quasi-stagnant low-oxygen (O2 < 10ppb) aqueous environment at 243°C, under loading conditions (ΔK, R, and cyclic frequency) conducive to environmentally assisted cracking (EAC) in higher-sulfur steels under quasi-stagnant conditions. Earlier experiments on unclad compact tension specimens of this heat of steel did not exhibit EAC, and the present experiments on semi-elliptical surface cracks penetrating cladding also did not exhibit EAC.


Sign in / Sign up

Export Citation Format

Share Document