Contributions of preweaning growth information and maternal effects for prediction of carcass trait breeding values among crossbred beef cattle

1999 ◽  
Vol 79 (1) ◽  
pp. 17-25 ◽  
Author(s):  
D. H. Crews Jr. ◽  
R. A. Kemp

Preweaning and carcass trait records from crossbred steers (n = 1015) and heifers (n = 957) were used to estimate genetic parameters and to investigate the efficacy of maternal effects and preweaning growth information for improving estimation of EBV for carcass traits for crossbred beef cattle. Dams (n = 775) representing three F1 and twelve back-cross combinations involving the Charolais, Hereford, Angus, Simmental and Shorthorn breeds were mated over six years to Limousin bulls (n = 36) at two locations in western Canada. Four animal models, involving from zero to three maternal (co)variances were used to analyze four carcass traits. Rank and simple correlations indicated that maternal effects were relatively unimportant for estimation of direct carcass trait breeding values. Direct heritabilities were 0.28, 0.12 and 0.16 for birth weight, preweaning daily gain and weaning weight, and were 0.20, 0.35, 0.50 and 0.38 for hot carcass weight, fat thickness, ribeye area and percent lean yield, respectively. Maternal heritabilities were 0.21, 0.22 and 0.40 for birth weight, preweaning daily gain and weaning weight, respectively. Estimated genetic correlations between percent lean yield and hot carcass weight, fat thickness and ribeye area were –0.05, –0.85 and 0.39, respectively, and 0.30 between hot carcass weight and ribeye area. Direct genetic effects for birth weight had moderate (0.51 to 0.54) correlations with direct effects for carcass weight, ribeye area and percent lean yield. Direct genetic effects for fat thickness were negatively correlated with direct effects for birth weight (−0.44), preweaning daily gain (−0.15) and weaning weight (−0.25). Maternal genetic effects for preweaning traits had near-zero correlations with direct genetic effects for fat thickness and percent lean yield. Adding preweaning growth information to genetic evaluations for carcass traits slightly decreased prediction error variances for breeding values and would be recommended when information on carcass traits is limited. Key words: Genetic evaluation, carcass traits, beef cattle

1968 ◽  
Vol 48 (1) ◽  
pp. 1-6 ◽  
Author(s):  
G. L. Roy ◽  
W. J. Boylan ◽  
M. E. Seale

Data from a swine breed development project provided estimates of the genetic correlation among six performance and carcass traits. The data from the new breed, called Managra, were obtained over a 7-year period. Most genetic relationships examined were such that selection for improvement of one trait would yield a favorable improvement in another. Both carcass backfat and live backfat probe were found to be negatively correlated with area of loin eye and length of carcass. A positive genetic correlation was found between post-weaning daily gain and loin eye area. A high positive genetic correlation was found between birth weight and loin eye area. An unfavorable association involved a positive genetic correlation between birth weight and backfat.Correction factors for effect of carcass weight on the magnitude of carcass trait measurements and differences in means between sexes were obtained.Heritability of the traits was estimated by paternal half-sib correlation. The estimates for carcass traits were moderately high and agree well with most other estimates reported in the literature.


2004 ◽  
Vol 84 (4) ◽  
pp. 599-609 ◽  
Author(s):  
J. A. Minick ◽  
M. E. Dikeman ◽  
E. J. Pollak ◽  
D. E. Wilson

Heritabilities and correlations of Warner-Bratzler shear force (WBSF), marbling score (MS), hot carcass weight (HCW),12–13th rib-fat (FAT), and ribeye area (REA) were calculated from 3360 Angus-, Charolais-, Hereford-, and Simmental-sired cattle in the C attleman’s Beef Board Carcass Merit Project. The heritabilities (± SE) for WBSF, MS, HCW, FAT, and REA were 0.34 ± 0.25, 0.43 ± 0.28, 0.73 ± 0.35, 0.16 ± 0.19, and 0.56 ± 0.31 in Angus; 0.43 ± 0.22, 0.30 ± 0.18, 0.21 ± 0.16, 0.35 ± 0.20, and 0.23 ± 0.16 in Charolais; 0.12 ± 0.11, 0.55 ± 0.22, 0.20 ± 0.14, 0.25 ± 0.15 and 0.34 ± 0.17 in Hereford; and 0.16 ± 0.14, 0.44 ± 0.20, 0.45 ± 0.20, 0.23 ± 0.16, and 0.30 ± 0.18 in Simmental. The genetic correlations, averaged across analysis type, for WBSF-MS, WBSF-HCW, WBSF-FAT, WBSF-REA, MS-HCW, MS-FAT, MS-REA, HCW-FAT, HCW-REA, and FAT-REA were -0.17, 0.32, -0.23, 0.30, 0.10, -0.17, 0.39, -0.15, 0.68, and -0.86 in Angus; -0.42, 0.77, 0.52, -0.05, -0.44, -0.22, -0.19, 0.66, -0.05, and -0.24 in Charolais; -0.43, -0.04, -0.33, 0.09, 0.08, 0.79, -0.14, -0.26, 0.50, and -0.38 in Hereford; and 0.55, 0.08, 0.62, -0.08, 0.30, 0.61, -0.14, 0.06, 0.65, and -0.48 in Simmental. Key words: Beef cattle, genetic parameters, carcass quality, tenderness


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 60-60
Author(s):  
Taylor J Garcia ◽  
Colton A Robison ◽  
Paul A Beck ◽  
Ryan R Reuter ◽  
Blake K Wilson ◽  
...  

Abstract Spring (SPRING) and fall (FALL) born steers (n = 211) were used in a mixed effects model to evaluate calving season and conception method [artificial insemination (AI) or natural service (NS)] on finishing performance and carcass traits. SPRING were weaned in October, grazed dormant range for 90 days and grazed wheat pasture for 90 days before shipping to finish. FALL were weaned in May, and grazed tallgrass prairie for 120 days before shipping to finish. Initial and final BW, days on feed, ADG, DMI, and gain to feed efficiency were evaluated as performance measures. Dry matter intake and gain:feed were analyzed on pen basis. Hot carcass weight, yield grade, fat thickness, ribeye area, and marbling score were collected at harvest. Bodyweight of SPRING and AI steers were heavier (P ≤ 0.05) entering and leaving the feedlot than FALL and NS steers, respectively. Compared to FALL steers, ADG (P < 0.01) and DMI (P = 0.03) were greater for SPRING and required less days on feed (P ≤ 0.05). Calving season and conception method (P ≥ 0.2) did not affect gain:feed. Conception method (P = 0.5) did not affect ADG, DMI, and days on feed. SPRING had higher yield grades (P < 0.01) and increased in fat thickness (P = 0.01) compared to FALL steers. There were no differences (P = 0.2) in hot carcass weight, ribeye area, and marbling score due to season of birth. Steers born from AI mating had greater hot carcass weight (P = 0.01) and marbling score (P = 0.02), but conception method did not affect yield grade, fat thickness, and ribeye area (P > 0.2). These results demonstrate SPRING steers are heavier entering and leaving the feedlot, have higher ADG and DMI, and require less days on feed; however, gain:feed, hot carcass weight, ribeye area, and marbling score did not differ from FALL steers. An economic analysis is needed to validate an AI program based on calving season in north-central Oklahoma.


1975 ◽  
Vol 55 (2) ◽  
pp. 169-177
Author(s):  
J. E. LAWSON

Calves of the Hereford breed, and the Highland × Hereford and Hereford × Highland crosses surpassed those of the Highland in final feedlot weight, average daily gain in the feedlot, cold carcass weight, and dressing percentage. The fat thickness over the eye muscle was significantly less in the Highland than in the other groups; however, when considered as thickness of fat per 100 kg of cold carcass no important breed differences existed. Although area of eye muscle did not differ between any of the breeds and crosses, the Highland had greater area of eye muscle per 100 kg of cold carcass. Calves were slaughtered when the majority of the Herefords were judged, visually, to have reached "choice" or "good" grades. The percentage of animals achieving grades of choice or good was less for the Highland than for the other three groups. Heterosis effects were 6.3, 5.7, 7.1, 1.2, and 5.2% for final feedlot weight, feedlot average daily gain, cold carcass weight, dressing percent, and intramuscular fat. Although the percent heterosis for area of eye muscle and fat thickness over the eye muscle was 4.4 and 5.8, the advantage was in favor of the straightbreds over the reciprocal crosses (5.3%) when considered in terms of area of eye muscle per 100 kg of cold carcass weight. The two crossbred groups were similar to the Hereford, while the Highland was inferior to all three groups in overall performance for the traits in this study.


1976 ◽  
Vol 56 (2) ◽  
pp. 193-199 ◽  
Author(s):  
J. E. LAWSON ◽  
H. F. PETERS

The 1/4-Brahman bull calves exceeded those of the cattalo and Hereford by 19.6 and 14.8% in weaning weight. However, the Hereford surpassed the 1/4-Brahman and the cattalo by 11.1 and 14.9% in feedlot average daily gain. Cattalo (cattle × bison species cross) bulls weighed 17.7 and 12.0% less than 1/4-Brahman and Hereford bulls just before slaughter at an average age of 425 days. Similar differences were apparent for cold carcass weight. When age-of-dam and age-at-slaughter were covariate factors, area of the longissimus dorsi from 1/4-Brahman calves was larger by 13.5 and 8.7% than those from cattalo and Hereford. Fat thickness over the 1. dorsi did not differ among groups. Carcass weight and age at slaughter were covariates for the weights of meat cuts. Weights of loin, round, or plate cuts did not differ among groups. However, the rib cut from the 1/4-Brahman was lighter than that from the cattalo and Hereford, and the chuck cut was heavier. The Hereford exceeded the 1/4-Brahman in total weight of the more expensive rib–loin–round cuts. Warner-Bratzler shear estimates of tenderness did not differ among groups. Average fat thickness over the 1. dorsi was not significantly correlated to any of the means of the shear test on raw or broiled samples. In general, 1/4-Brahman and Hereford groups each exhibited superiority over the other two groups for several traits, while cattalo bulls did not exceed the other two groups in any of the traits considered in this study.


2014 ◽  
Vol 59 (No. 7) ◽  
pp. 302-309 ◽  
Author(s):  
L. Vostrý ◽  
Z. Veselá ◽  
A. Svitáková ◽  
H. Vostrá Vydrová

The most appropriate model for genetic parameters estimation for calving ease and birth weight in beef cattle was selected. A total of 27 402 field records were available from the Czech Charolais breed. For estimation of genetic parameters for calving ease and body weight, three bivariate models were tested: a linear-linear animal model (L-LM) with calving ease classified into four categories (1 – easy; 2–4 – most difficult), a linear-linear animal model (SC-LM) in which calving ease scores were transformed into Snell scores (Snell 1964) and expressed as percentage of assisted calving (ranging 0–100%), and a bivariate threshold-linear animal model (T-LM) with calving ease classified into four categories (1 – easy, 2–4 – most difficult). All tested models included fixed effects for contemporary group (herd × year × season), age of dam, sex and breed of a calf. Random effects included direct and maternal genetic effects, maternal permanent environmental effect, and residual error. Direct heritability estimates for calving ease and birth weight were, with the use of L-LM, SC-LM, and T-LM, from 0.096 ± 0.013 to 0.226 ± 0.024 and from 0.210 ± 0.024 to 0.225 ± 0.026, respectively. Maternal heritability estimates for calving ease and birth weight were, with the use of L-LM, SC-LM, and T-LM, from 0.060 ± 0.031 to 0.104 ± 0.125 and from 0.074 ± 0.041 to 0.075 ± 0.040, respectively. Genetic correlations of direct calving ease with direct birth weight ranged from 0.46 ± 0.06 to 0.50 ± 0.06 for all tested models; whereas maternal genetic correlations between these two traits ranged from 0.24 ± 0.17 to 0.25 ± 0.53. Correlations between direct and maternal genetic effects within-trait were negative and substantial for all tested models (ranging from –0.574 ± 0.125 to –0.680 ± 0.141 for calving ease and from –0.553 ± 0.122 to –0.558 ± 0.118 for birth weight, respectively), illustrating the importance of including this parameter in calving ease evaluations. Results indicate that any of the tested models could be used to reliably estimate genetic parameters for calving ease for beef cattle in the Czech Republic. However, because of advantages in computation time and practical considerations, genetic analysis using SC-LM (transformed data) is recommended.


2002 ◽  
Vol 82 (3) ◽  
pp. 471-473 ◽  
Author(s):  
L. A. Goonewardene ◽  
A. Suleiman ◽  
E. K. Okine

Feding different physical forms of diets on performance and carcass traits of goats was studied. Thirty-six wethers were fed total mixed diets of either whole or rolled barley mixed with grass-alfalfa hay either chopped to 2.5 or 5 cm lengths. No differences (P > 0.05) in ADG (76.6 to 84.8 g d-1), feed intake (0.92 to 1.01 kg d-1), F:G (12.2 to 13.1 kg kg-1), hot carcass weight (13.5 to 14.1 kg), dressing %, (45.0 to 45.7%) and ribeye area (10.9 to 13.1 cm2) were observed among goats fed the four dietary combinations. Key words: Processing, feeds, goats, performance, carcass


1994 ◽  
Vol 74 (4) ◽  
pp. 621-632 ◽  
Author(s):  
J. A. Newman ◽  
A. K. W. Tong ◽  
S. D. M. Jones ◽  
G. W. Rahnefeld ◽  
D. R. C. Bailey ◽  
...  

Breed-of-dam and sex-of-calf effects are reported based on observation of 2007 heifer and steer carcasses. The carcasses were derived from Limousin-sired calves born to dams representing 15 F1 and backcross genotypes reared at two locations over a period of 5 yr. The calves represented Hereford × Angus, Charolais × Shorthorn, Simmental × Shorthorn and all backcross combinations involving Charolais or Simmental with Hereford, Angus or Shorthorn. Carcass traits were analyzed on an unadjusted, a constant hot-carcass weight, and a constant rib-fat depth basis. The slaughter criteria dictated that steers were heavier at slaughter than heifers. They also exhibited higher dressing yield, greater longissimus thoracis area, and lower fat depth. Charolais and Simmental breeding was associated with less rib fat depth, greater longissimus thoracis area, a higher proportion of preferred cuts, less dissectible fat, more bone and more lean in the preferred cuts than British beef breeding. Within the European (Charolais and Simmental) and British beef (Hereford, Angus and Shorthorn) breed groups, breed effects were smaller, but for carcass composition traits they were frequently significant. When compared with Simmental, Charolais breeding tended to be associated with less marbling, less rib fat depth, less dissectible fat and more lean in the preferred cuts. Among the British beef breeds, Hereford was associated with the highest proportion of preferred cuts, Shorthorn with the lowest rib fat depth — but the highest dissectible fat — and Angus with the most marbling, the greatest longissimus thoracis area and the lowest bone content. This research has demonstrated that breed effects for carcass composition traits tend to be additive and that a significant effect may be associated with substitution of as little as one-eighth of the breed composition. Key words: Beef cattle, slaughter traits, carcass traits, breed type, crossbred dam, backcross dam


2020 ◽  
Vol 20 (2) ◽  
pp. 465-483
Author(s):  
Alessandro Lima Machado ◽  
Ariana Nascimento Meira ◽  
Evandro Neves Muniz ◽  
Hymerson Costa Azevedo ◽  
Luiz Lehmann Coutinho ◽  
...  

Abstractµ-calpain (CAPN1) and calpastatin (CAST) genes play key roles in protein turnover. The present study aimed to identify the variants in these genes associated with growth and ultrasound carcass traits in Santa Inês sheep. A sample of 192 no full sibling Santa Inês lambs was used. Fragments of the CAST and CAPN1 genes were amplified and next-generation sequencing was performed in the MiSeq platform. Variants in the CAPN1 and CAST sequences were then detected using bioinformatic tools. Withers and croup heights, body length, thoracic and croup widths, thoracic and leg girths, body depth, carcass fat score, rib eye area, fat thickness, body weights were recorded at weaning and at 140 days post-weaning, and average daily gain post-weaning was calculated. Both single-locus and haplotype association analyses were performed with the model as follows: farm (2 levels), year (4 levels), the month of birth (12 levels), and the covariate age of the animal. The fragments amplified included 4,514 bp between the 20th and 23rd exons of CAST as well as 3,927 bp between the 12th and 21st exons of CAPN1. In these regions, 58 (CAST) and 45 (CAPN1) variants were identified. In the CAST gene, the single-locus analysis revealed 22 suggestive additive effects (P<0.05) on several growth and carcass traits. Moreover, haplotype substitutions were associated with rib eye area (–0.689±0.290), average daily gain (–23.6±10.4), thoracic girth (–2.72±1.27), body length (–3.38±1.49), and leg girth (–2.84±1.37). Regarding the CAPN1 gene, the single-locus analysis identified seven suggestive additive effects, while only one haplotype replacement effect on fat thickness (–0.0143±0.0053) was detected. The results of the present study suggest that variants in the CAPN1 and CAST genes are associated with growth and ultrasound carcass traits in Santa Inês sheep, which may be a source of information to improve knowledge regarding the genetic control of these traits.


2003 ◽  
Vol 2003 ◽  
pp. 142-142
Author(s):  
L. Suguisawa* ◽  
H. N. Oliveira ◽  
W. R. S. Mattos ◽  
A. A. Souza ◽  
M. D. B. Arrigoni ◽  
...  

Ultrasound technology provides a oportunity to quickly and economically estimate carcass atributes on the live animal (Brethour, 2000). In general, this technology has been used to detect variation for fat depth and ribeye area (longissimus dorsi muscle) in performance tested yearling bulls at several countries. In the present study, real time ultrasonography was used to predict the ribeye area (RA) and the subcutaneous fat thickness (FT) in Nellore crossbred.


Sign in / Sign up

Export Citation Format

Share Document