IN SITU DRY MATTER AND PROTEIN DEGRADATION OF VARIOUS PROTEIN SOURCES IN DAIRY CATTLE

1984 ◽  
Vol 64 (2) ◽  
pp. 443-452 ◽  
Author(s):  
J. K. HA ◽  
J. J. KENNELLY

In situ dry matter and protein degradation of various protein sources in the rumen of Holstein steers and cows were studied. The effective degradability of each feed protein was estimated from nonlinear parameters and an assumed constant outflow rate of solids. Protein sources tested were soybean meal (SBM), canola meal (CM) and dehydrated alfalfa meal (Dehy), in exp. 1, and fish meal (FM), CM, CM treated with formalin (FCM) and whole pig blood (BCM) in exp. 2. Nitrogen disappearance, estimated from nylon bags suspended in the rumen, of SBM was less than that of CM; disappearance of Dehy was less than that observed for both oil seed meals. The disappearance of FM was significantly less than all other feed proteins. Formalin treatment of CM was very effective in reducing both dry matter and nitrogen disappearance from the bags, but blood treatment was not effective. Protein degradability estimated from disappearance data was 53.6, 65.8, 41.4, 28.9, 65.5, 22.2, 71.2 and 70.8% for SBM, CM, Dehy, FM, CM, FCM, 30% BCM and 50% BCM, respectively. Key words: In situ, dry matter degradation, nylon bags, rumen, protein degradation, cattle

2005 ◽  
Vol 6 (1) ◽  
pp. 100
Author(s):  
Diego Chamorro ◽  
Juan Evangelista Carulla ◽  
Pablo Cuesta

<p>Para cuantificar la degradación <em>in situ </em>de tejidos vegetales y su relación con la composición química de especies forrajeras se seleccionaron láminas foliares de las gramíneas <em>Bouteloua repens </em>y <em>Bothriochloa pertusa </em>y foliolos de las leguminosas <em>Stylosanthes scabra</em>, <em>Desmodium barbatum </em>y <em>Tephrosia cinerea</em>. En el rumen se incuba­ron muestras de 10 mm de largo durante 0, 12, 24, 48 y 72 horas; para la lectura del área residual se digitalizaron ocho tejidos. A las 24 y 48 h de incubación <em>B. pertusa </em>presentó relaciones positivas entre la degradación de la epidermis adaxial (EA) y la FDN (R2= 90,2), entre el mesófilo y la DIVMS (R2=80,1), y entre los tejidos len­tamente degradables (TLD) y la FDA (R2= 83,9); y relaciones negativas entre EA y DIVMS (R2= –73,1), los TLD con la DEF (R2= –74,3), la EA con la PC (R2= –87,6), y el esclerenquima con la DIVMS y la PC (R2= –84,3 y R2= –90,8). Después de 72 horas de incubación las mayores áreas residuales en gramíneas fueron la estructura kranz entre 34,2% y 36,5%, el mesófilo entre 20,9% y 21,4%, el xilema de 11,5% a 17,1% y la EA entre 11,8% y 13,9%; no obstante el esclerénquima se relacionó estrechamente con indicadores de calidad nutricional. Las gramíneas obtuvieron mayores porcen­tajes de tejidos no degradables que las leguminosas; por lo tanto, la DIVMS y la DEF fueron menores. Entre las leguminosas, <em>S. scabra</em>, presentó la mayor digestibilidad de los tejidos rápidamente degradables, tanto en sequía como en lluvia; en la época seca se incrementó en 134,6% la degradación de estos tejidos. Adicionalmente, en esta especie el área residual de los taninos no presentó relación directa con la degra­dación del mesófilo. En leguminosas la tasa y extensión de la degradación de las epidermis se incrementaron marcadamente a mayor tiempo de incubación, presen­tándose diferencias entre especies, situación que no exhibieron las gramíneas. En <em>D. barbatum </em>la degradación de la EA se asoció con la DIVMS y la DEF, explicando en 77,4% y 72,95% estos porcentajes; de igual manera se reportaron relaciones negati­vas entre la degradabilidad de la epidermis y los porcentajes de FDN, FDA, lignina y taninos (R2= –0,76; R2= –0,79; R2= –0,53 y R2= –0,76, respectivamente).</p><p> </p><p><strong>Microbial <em>in situ </em>degradation of grasses and legumes leaf tissues and its realtionship with nutritional quality and precipitation</strong></p><p>A study was conducted to measure the <em>in situ </em>de- gradation of plant tissues and its relationship with forage chemical composition in leaves of the grasses <em>Bouteloua repens </em>and <em>Bothriochloa pertusa </em>and of the legumes <em>Stylosanthes scabra</em>, <em>Desmodium barbatum </em>and <em>Tephrosia cinerea</em>. Forage samples of 10 mm in length were incubated in the rumen for 0, 12, 24, 48 and 72 h and tissue residual area was determined by reading the residual area in eight digitalized leaf samples per forage. In <em>B. pertusa</em>, after 24 and 48 h of incubation there were positive relations between the degradation of adaxial epidermis (AE) and the neutral detergent fiber (NDF, R2 = 90.2), between mesophyll and in vitro dry matter degradability (IVDMD, R2 = 80,1), and between slowly degradable tissues (SDT) and the acid detergent fiber (ADF, R2 = 83.9); and negative relationships between AE and IVDMD (R2 = -73,1), between SDT and effective dry matter degradation (EDMD, R2 = -74,3), between AE and crude protein (CP, R2 = -87,6), and between sclerenchyma and IVDMD with CP (R2 = -84,3 and R2 = -90,8, respectively). After 72 h of incubation, the greater residual areas in grasses were the Kranz structure (34.2% to 36.5%), mesophyll (20.9% to 21.4%), xylem (11.5% to 17.1%) and AE (11.8% to 13.9%). The area of sclerenchyma was related close­ly to indicators of nutritional quality. Overall, the grasses had greater content of non-degradable tis­sues than the legumes; therefore, their IVDMD and EDMD were lower. Among the legumes, <em>S. scabra </em>showed the greater digestibility of rapidly degrada­ble tissues, both during the rainy and dry seasons. At the dry season, the degradation of these tissues increased by 134.6%. Additionally, in this legume, the content of tannins did not have a direct relation­ship with the degradation of mesophyll. The rate and extension of the degradation of epidermis in legumes, were noticeably increased with increasing length of incubation, existing differences between species, a situation which was not observed in the grasses. In <em>D. barbatum</em>, the degradation of the AE was positively associated with both the IVDMD and EDMD (R2 = 77,4% and 72,95%, respectively). On the other hand, the degradability of epidermis and the percentage of NDF had negative relations with ADF, lignin and tannins (R2 = -0,76; R2 = -0,79; R2 = -0,53 and R2 = -0,76, respectively).</p>


1999 ◽  
Vol 82 (9) ◽  
pp. 1978-1990 ◽  
Author(s):  
J.C. Elizalde ◽  
N.R. Merchen ◽  
D.B. Faulkner

2017 ◽  
Vol 28 (3) ◽  
pp. 667
Author(s):  
Pablo Losada Aguilar ◽  
Aurora Cuesta Peralta ◽  
Juan De Jesús Vargas Martínez

The objective of the present study was to evaluate the in vitro and in situ dry matter degradation by including cacay cake (Caryodendron orinocense) on a diet based on Brachiaria dictyoneura. The experiment was developed in an animal nutrition laboratory on the Animal Sciences Faculty at the Universidad de Ciencias Aplicadas y Ambientales, Bogotá, Colombia, in July 2015. Four treatments were evaluated: B. dictyoneura, cacay cake and two mixtures of B. dictyoneura: cacay cake (80:20 and 60:40). The chemical composition and the in vitro and in situ degradability of the dry matter and the crude protein, at 48 hours were determined. The variables were analyzed through a complete randomized design with four treatments. The inclusion of cacay cake decreased the cell wall-associated with carbohydrate concentration and increased the higher digestibility nutrients; the crude protein and dry matter, in situ and in vitro degradability increased 22, 6 and 38%, respectively. In conclusion, the inclusion of cacay cake on a diet of B. dictyoneura improves dry matter degradation in vitro and in situ conditions.


2014 ◽  
Vol 23 (2) ◽  
pp. 177-184 ◽  
Author(s):  
C. Purwin ◽  
M. Fijałkowska ◽  
B. Kowalik ◽  
H. Skórko-Sajko ◽  
Z. Nogalski ◽  
...  

2011 ◽  
Vol 50 (No. 2) ◽  
pp. 60-67 ◽  
Author(s):  
A. Kamalak ◽  
O. Canbolat ◽  
Y. Gurbuz ◽  
O. Ozay

Dry matter (DM) degradation of wheat straw (WS), barley straw (BS), lucerne hay (LH) and maize silage (MS) was determined using two different techniques: (i) in vitro gas production and (ii) nylon bag degradability technique. In vitro gas production and in situ DM disappearance were measured after 3, 6, 12, 24, 48, 72 and 96 hours of incubation. In situ and in vitro DM degradation kinetics was described using the equation y = a + b (1 &ndash; e<sup>ct</sup>). In all incubations there were significant (P &lt; 0.001) correlations between gas production and in situ DM disappearance or estimated parameters ((a + b)<sub>ga</sub><sub>s</sub> and (a + b)<sub>is</sub> or (a + b)<sub>gas</sub> and EDMD<sub>is</sub>) whereas there were no significant (P &gt; 0.05) correlations between c<sub>gas</sub> and c<sub>is</sub> or b<sub>gas</sub> and b<sub>is</sub>. Gas production from the insoluble fraction (b) alone explained 98.3% of the variation of EDMD. The inclusion of gas production from the quickly soluble fraction (a) and rate constant (c) of gas production in the regression equation improved the accuracy of EDMD prediction. The correlations between the results of both methodologies seem to be sufficiently strong to predict degradability parameters from gas production parameters. It was concluded that the in vitro gas production technique has good potentiality to predict in situ DM disappearance and some DM degradation parameters. &nbsp; &nbsp;


Sign in / Sign up

Export Citation Format

Share Document