PERSISTENCE AND PHYTOTOXICITY OF DINITROANILINE HERBICIDES IN MANITOBA SOILS

1980 ◽  
Vol 60 (1) ◽  
pp. 5-11 ◽  
Author(s):  
M. K. PRITCHARD ◽  
E. H. STOBBE

The persistence and phytotoxicity of dinitramine (n4, N4-diethyl-α,α,α-trifluoro-3,5-dinitrotoluene-2,4-diamine), fluchloralin (N-(2-chloroethyl)-2, 6-dinitro- N-propyl-4- (trifluoromethyl)aniline), profluralin (N-(cyclopropylmethyl)α,α,α-trifluoro-2, 6-dinitro-N-propyl-p-toluidine), and trifluralin (α,α,α-trifluoro-2,6-dinitro-N-N-dipropyl-p-toluidine) were compared in three Manitoba soils: sandy loam, clay loam and clay. The phytotoxicities of all chemicals decreased with increased organic matter. The phytotoxicities of the dinitroanilines were: dinitramine > trifluralin > profluralin = fluchloralin. Increased organic matter increased the persistence of trifluralin and fluchloralin. Profluralin and dinitramine persistence increased with increased clay and organic matter content. Profluralin was the most persistent chemical over all soil types. Under environmental conditions that retard dinitroaniline loss from Manitoba soils, residues of some of these herbicides may cause crop injury the year after application.

1976 ◽  
Vol 56 (3) ◽  
pp. 129-138 ◽  
Author(s):  
A. J. MACLEAN

The Cd concentration in 10 plant species grown in a neutral surface soil (0.65 ppm Cd) varied from 0.18 ppm in potato tubers to 0.99 ppm in soybean roots on a dry matter basis. Addition of 5 ppm Cd increased the concentrations in the plants markedly and they were particularly high in lettuce (10.36 ppm) and tobacco leaves (11.57 ppm). Cd concentrations tended to be lower in the edible portion (seed, fruit, tubers) than in other plant parts. Added Cd affected yields in only a few instances. But in another experiment, Cd added at a rate of 5 ppm to five soils decreased the yield of lettuce in most instances. In a comparison of results for two similarly managed sandy loam soils, nearly neutral in reaction but differing in organic matter content (2.17 vs. 15.95% organic C), the concentration of Cd was lower in lettuce grown in the soil with the higher amount of organic matter. The Cd content of the lettuce was reduced by liming some of the acid soils. Addition of Cd increased the concentration of Zn in the plants appreciably, but added Zn did not affect Cd uptake. In an incubation experiment comprising five soils, DTPA (diethylenetriamine-pentaacetic acid) extractable Cd decreased with liming of three Cd-treated acid soil samples. In comparisons of two sandy loam soils and of surface and subsoil layers of a sand, extractable Cd increased with higher amounts of soil organic matter.


Weed Science ◽  
1995 ◽  
Vol 43 (1) ◽  
pp. 121-127 ◽  
Author(s):  
Jon E. Scott ◽  
Leslie A. Weston ◽  
R. Terry Jones

Experiments were conducted at Lexington and Quicksand, KY, in 1989 and 1990 to determine the effect of preplant incorporated clomazone on weed control, crop injury, and yield of broccoli, cauliflower, green cabbage, red cabbage, and pak choi. Oxyfluorfen and trifluralin were included as standard treatments. Greater than 80% weed control was observed at both locations with 0.8 kg ai ha−1clomazone, with the exception of smooth pigweed at Lexington. All clomazone treatments caused crop injury 2 WAT. Injury was still evident 8 WAT at clomazone rates of 1.7 and 3.4 kg ha−1, but was minor with rates of 0.8 kg ha−1or less on broccoli, cauliflower, and red cabbage. Injury was less at Quicksand in both years and seasons over all clomazone rates, most likely due to higher soil organic matter content Yields of broccoli and cauliflower treated with 0.8 kg ha−1clomazone were similar to yields with oxyfluorfen on a 3% organic matter soil at Lexington in 1989. However, clomazone at 0.8 kg ha−1at Lexington reduced 1989 spring yields of green cabbage, red cabbage, and pak choi and 1990 spring yields of all cole crops as compared to oxyfluorfen. Clomazone at 0.8 kg ha−1at Quicksand reduced yield of green cabbage and pak choi in spring 1990 only on a 5.2% organic matter soil. Fall yields of broccoli and cauliflower in both years were not reduced by clomazone at 0.8 kg ha−1or less at either location. Our studies indicated potential for utilization of clomazone on cole crops in higher organic matter soils, especially if some early season crop injury and occasional yield loss can be tolerated.


Weed Science ◽  
1991 ◽  
Vol 39 (2) ◽  
pp. 280-283 ◽  
Author(s):  
George H. Friesen ◽  
David A. Wall

Response of flax, canola, field pea, sunflower, field corn, lentils, and common buckwheat to soil residues of CGA-131036 and chlorsulfuron applied at 22 g ai ha–1was determined on two soil types at Morden, Manitoba. on a fine sandy loam with a pH of 7.4 and 4.5% organic matter, the length of time required before crops showed no phytotoxicity from CGA-131036 residues was: sunflower 4 yr; canola and common buckwheat 3 yr; flax 2 yr; field pea and field corn 1 yr. on a clay loam with a pH of 6.5 and 5.3% organic matter, the corresponding duration was: lentil, canola, and sunflower 3 yr; flax and field pea 1 yr. Chlorsulfuron residues persisted somewhat longer than CGA-131036 residues on the sandy loam but not on the clay loam.


1982 ◽  
Vol 62 (1) ◽  
pp. 165-175 ◽  
Author(s):  
C. R. DE KIMPE ◽  
M. BERNIER-CARDOU ◽  
P. JOLICOEUR

Twenty-one topsoils, with texture varying from sandy loam to clay and organic matter content ranging from 1.6 to 11.9%, were submitted to compaction and settling at different moisture contents where dry bulk density was determined. Under compaction, the density curve went through a maximum while a minimum was observed in the case of settling. Optimum moisture contents corresponding to these two characteristic densities were almost the same. The most important physical properties affecting soil behavior under compaction and settling were found to be water retention properties at low matric potential which themselves depended primarily on organic matter content. Samples submitted to compaction had saturated hydraulic conductivities less than 1 cm/h, while after settling, Ksat measurements ranged from 0.8 to 234 cm/h. Organic matter played an important role in reducing the effects of compaction, and moisture content alone was not sufficient to predict the best conditions for workability in the fields.


Soil Research ◽  
2016 ◽  
Vol 54 (7) ◽  
pp. 880
Author(s):  
Mohammad Reza Chaichi ◽  
Marcus Turcios ◽  
Mina Rostamza

Non-ionic surfactants have been well researched as a tool to ameliorate water repellent conditions. However, few studies have evaluated the risks and benefits of non-ionic surfactant applications in wettable soil. The objective of this study was to evaluate the effects of a surfactant in modifying the wetting pattern in soils of different textures and organic matter contents. The experimental treatments consisted of (1) four different soil textures including sandy, sandy loam, sandy clay loam and silt loam, (2) four different organic matter contents (0.2, 0.7, 1.2 and 1.7% by weight), and (3) irrigation water treatments with or without surfactant (IrrigAid Gold). The experiment was carried out in Plexiglas boxes with one drip emitter under the soil surface. The results demonstrated the superiority of surfactant application on increasing water distribution in the soil profile for all soil textural classes. Silt loam texture had the highest side wetted area and wetting depth 45min after the initiation of irrigation. Upward capillary water movement and top wetted area significantly decreased in the surfactant treatment across all soil textures except in sandy soil. As organic matter content increased, top wetted area decreased. These findings clarified the potential ability of surfactant in increasing water infiltration in non-repellent soil in an in vitro system.


1961 ◽  
Vol 7 (4) ◽  
pp. 507-513 ◽  
Author(s):  
E. Strzelczyk

This study represents an attempt to correlate the low numbers of Azotobacter in rhizosphere and root-free soils at the Central Experimental Farm, Ottawa, with the incidence of bacterial and actinomycete antagonists of this organism. Wheat, radish, and onion were grown in the greenhouse in two soils varying greatly in fertility and organic matter content, and isolations of bacteria and actinomycetes were made periodically for testing against Azotobacter. It was found that rhizosphere soil contained greater numbers of microorganisms antagonistic to Azotobacter than root-free soil. Of the three crops used wheat exerted the least effect. In all the tests numbers of antagonists were greater in the fertile Granby sandy loam than in the infertile Upland sand. The results correlated well with the Azotobacter populations in these soils as reported in the first paper of this series.


Weed Science ◽  
1999 ◽  
Vol 47 (3) ◽  
pp. 349-352 ◽  
Author(s):  
Chris H. Tingle ◽  
David R. Shaw ◽  
Patrick D. Gerard

Laboratory studies were conducted to evaluate14C-flumetsulam mobility in two Mississippi soils of varied texture and organic matter content following delays in irrigation. Mobility was evaluated using packed soil columns, 25 cm deep, under unsaturated–saturated flow conditions. Irrigation timings included 0, 3, and 5 d after flumetsulam application. Flumetsulam mobility (defined as the amount collected in leachate) decreased from 45% to no more than 20% of the applied in the Prentiss sandy loam soil when irrigation was delayed 3 or 5 d. With the Okolona soil, flumetsulam recovery in the leachate was 21, 14, and 6%, respectively when irrigation occurred 0, 3, and 5 d after application. Flumetsulam proved to be mobile when irrigation immediately followed application, with 6 to 45% recovered in the leachate from all soils evaluated. The Prentiss soil retained 6% of the applied flumetsulam in the upper 5 cm and the Okolona soil retained 22% when irrigation immediately followed flumetsulam application. When the irrigation interval was delayed at least 3 d, the Okolona soil retained 40% in the upper 5 cm, whereas the Prentiss soil retained 10%. Flumetsulam mobility was dependent on irrigation timing and soil type.


Weed Science ◽  
1969 ◽  
Vol 17 (1) ◽  
pp. 69-77 ◽  
Author(s):  
R. P. Upchurch ◽  
F. T. Corbin ◽  
F. L. Selman

Rates of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron) up to 2.4 lb/A were applied as layby weed control treatments for cotton (Gossypium hirsutum L., var. Coker 100-A) in association with 0.0 or 1.0 lb/A of diuron as a preemergence treatment. Soybeans (Glycine max L. Merr., var. Lee) were grown as an alternate year rotational crop or as a rotational crop after cotton had been grown 3 years under diuron treatment. Similar rotational systems were evaluated in which corn (Zea mays L., var. Coker 71), tobacco (Nicotiana tabacum L., var. NC-95 or NC-2326), wheat (Triticum sativum Lam., var. Wakeland), cotton, and peanuts (Arachis hypogaea L., var. NC-2) served as the rotational crops in place of soybeans. In this mixed crop rotation, herbicidal treatments were 1.0 lb/A of diuron applied as a preemergence treatment plus 0.6 or 1.2 lb/A of diuron or 1.2 lb/A of 3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea (linuron) applied as a layby treatment. Two soil types near Rocky Mount, North Carolina were used. Herbicidal residues were determined by bioassay analyses in the fourth year of the experiment and by evaluating crops grown in the years when no herbicides were applied. Diuron residues were greater on Duplin soil than on Norfolk soil, but residues on Duplin soil were less phytotoxic to crops than those on Norfolk soil. The higher organic matter content of Duplin soil (1.2 vs 0.6%) is cited to account for both of these observations. When diuron was applied to Norfolk soil as a preemergence treatment at 1.0 lb/A plus 0.6 lb/A as a layby treatment, the residues frequently injured wheat, peanuts, and tobacco grown subsequently. Soybeans sometimes were injured by this treatment, but corn and cotton tolerated it even when the layby rate was increased to 1.2 lb/A. At equal layby rates, linuron produced residues of less consequence than diuron. At the higher application rates, greater residues occurred following 3 years of application than where application had been on an alternate year basis.


2021 ◽  
Author(s):  
Iqbal Ahmad ◽  
Bushra Khan ◽  
Nida Gul ◽  
Muhammad Khan ◽  
Javaid Iqbal ◽  
...  

Abstract Lead (Pb) contamination in soil and subsequent transport in groundwater poses severe threats to the food safety and human health. In current study, the effects of soil organic matter on sorption behavior of Pb onto six agricultural soils were investigated by batch sorption experiments and microscopic characterization. Results indicated that Pb sorption onto agricultural soils was dominated by the soil organic matter content and soil texture. The decrease of organic matter content reduced the sorption capacity of Pb onto agricultural soils. Based on soil texture, the Pb sorption was highest in clay soil and lowest in silt type of soil. The overall Pb sorption was in the order of clay > clay loam > silty clay loam ≈ loam > silt loam > silt. The sorption isotherms of measured aqueous and soil phase Pb concentrations were fit well with the linear sorption model. The organic carbon normalized partition coefficients (Log KOC) ranged from 2.90 to 2.99. Linear partition coefficient (Kd) values were positively correlated with the soil properties, such as clay (R2 =0.90), OC (R2 =0.94) and pH (R2 = 0.45); however, weak correlation was found between Kd and soil sand contents (R2 = 0.12). The leachability model showed potential risk of Pb leaching from silt soil with lowest organic matter content. The findings are of significant importance for understanding potential threats of Pb to the soil ecosystem, groundwater, plants, and humans.


Sign in / Sign up

Export Citation Format

Share Document