LEADER HARD RED SPRING WHEAT

1982 ◽  
Vol 62 (1) ◽  
pp. 231-232 ◽  
Author(s):  
R. M. De PAUW ◽  
D. S. McBEAN ◽  
S. R. BUZINSKI ◽  
T. F. TOWNLEY-SMITH ◽  
J. M. CLARKE ◽  
...  

Leader hard red spring wheat (Triticum aestivum L.) combines resistance to the wheat stem sawfly with a low level of alpha-amylase activity. It is adapted to the Brown soil zones of Alberta and Saskatchewan.

2000 ◽  
Vol 80 (1) ◽  
pp. 123-127 ◽  
Author(s):  
R. M. DePauw ◽  
J. M. Clarke ◽  
R. E. Knox ◽  
M. R. Fernandez ◽  
T. N. McCaig ◽  
...  

AC Abbey, hard red spring wheat (Triticum aestivum L.), is adapted to the Canadian prairies. It is significantly shorter than any of the check cultivars and has solid stems. AC Abbey expressed higher grain yield, earlier maturity, and heavier kernels than AC Eatonia, the solidstem check cultivar. It is resistant to the wheat stem sawfly (Cephus cinctus Nort.) and to prevalent races of common bunt and has moderate resistance to leaf rust and stem rust. AC Abbey is eligible for grades of Canada Western Red Spring wheat. Key words: Triticum aestivum L., red spring wheat, yield, wheat stem sawfly, plant height, maturity


2005 ◽  
Vol 85 (2) ◽  
pp. 397-401 ◽  
Author(s):  
R. M. DePauw ◽  
T. F. Townley-Smith ◽  
G. Humphreys ◽  
R. E. Knox ◽  
F. R. Clarke ◽  
...  

Lillian, hard red spring wheat (Triticum aestivum L.), exhibited reduced cutting by the wheat stem sawfly (Cephus cinctus Nort.) and is adapted to the Canadian prairies. Lillian produced significantly more grain yield than AC Abbey and Neepawa and its grain yield and protein concentration were similar to AC Barrie. It matured significantly earlier than Superb and Laura, and had improved resistance to leaf rust and leaf spotting diseases compared to AC Abbey. Lillian is eligible for all grades of the Canada Western Red Spring (CWRS) wheat class. Key words: Triticum aestivum L., cultivar description, grain yield and protein, resistance wheat stem sawfly, leaf and stem rust


1992 ◽  
Vol 72 (1) ◽  
pp. 225-227
Author(s):  
G. R. Hughes ◽  
P. Hucl

CDC Makwa is a hard red spring wheat (Triticum aestivum L.) cultivar which performs best in the Brown and Dark Brown soil zones of Saskatchewan and Alberta. CDC Makwa yields, on average, 3% more than Katepwa and is similar in maturity and quality.Key words: Cultivar description, Triticum aestivum L., wheat (spring)


1992 ◽  
Vol 72 (1) ◽  
pp. 221-223 ◽  
Author(s):  
G. R. Hughes ◽  
P. Hucl

Conway is a hard red spring wheat (Triticum aestivum L.) cultivar which is best adapted to the Brown and Dark Brown soil zones of Saskatchewan and Alberta. Conway matures a day earlier than Neepawa and yields 2–3% more.Key words: Cultivar description, Triticum aestivum L., wheat (spring)


2021 ◽  
pp. 1-10
Author(s):  
Chang Liu ◽  
Rehana S. Parveen ◽  
Samuel R. Revolinski ◽  
Kimberly A. Garland Campbell ◽  
Michael O. Pumphrey ◽  
...  

Abstract Genetic susceptibility to late maturity alpha-amylase (LMA) in wheat (Triticum aestivum L.) results in increased alpha-amylase activity in mature grain when cool conditions occur during late grain maturation. Farmers are forced to sell wheat grain with elevated alpha-amylase at a discount because it has an increased risk of poor end-product quality. This problem can result from either LMA or preharvest sprouting, grain germination on the mother plant when rain occurs before harvest. Whereas preharvest sprouting is a well-understood problem, little is known about the risk LMA poses to North American wheat crops. To examine this, LMA susceptibility was characterized in a panel of 251 North American hard spring wheat lines, representing ten geographical areas. It appears that there is substantial LMA susceptibility in North American wheat since only 27% of the lines showed reproducible LMA resistance following cold-induction experiments. A preliminary genome-wide association study detected six significant marker-trait associations. LMA in North American wheat may result from genetic mechanisms similar to those previously observed in Australian and International Maize and Wheat Improvement Center (CIMMYT) germplasm since two of the detected QTLs, QLMA.wsu.7B and QLMA.wsu.6B, co-localized with previously reported loci. The Reduced height (Rht) loci also influenced LMA. Elevated alpha-amylase levels were significantly associated with the presence of both wild-type and tall height, rht-B1a and rht-D1a, loci in both cold-treated and untreated samples.


2001 ◽  
Vol 84 (6) ◽  
pp. 1953-1963 ◽  
Author(s):  
Eugene J Gawalko ◽  
Robert G Garrett ◽  
Thomas W Nowicki

Abstract A monitoring program was conducted for trace elements in Western Canadian Hard Red Spring wheat (Triticum aestivum L.). Samples were selected from harvest survey samples submitted by producers from crop districts in Manitoba, Saskatchewan, and Alberta for 1996, 1997, and 1998 crops. The analytical quality control measures used in these surveys are described along with the results for Cd, Cu, Fe, Mn, Se, and Zn. Accuracy and precision for the analyses fell within the acceptable control limits. Year-to-year variations in grain chemistry were small for Cd, Mn, Se, and Zn, but Cu and Fe contents showed 12 and 9% decreases, respectively, over the 3 years. The overall variability for the plant-essential trace elements—Cu, Fe, Mn, and Zn—was low compared with that for Cd and Se. The spatial variation in crop chemistry across the Canadian Prairie wheat-producing region was greater than the year-to-year variations. Soil properties were major factors in controlling Cd and Se levels in grain.


1992 ◽  
Vol 72 (2) ◽  
pp. 459-463 ◽  
Author(s):  
H. W. Cutforth ◽  
F. Selles

A field study was carried out to determine the effects of seed row configuration on days to maturity, water use and grain yield of spring wheat (Triticum aestivum L. ’Leader’) grown in a semiarid environment. From 1986 to 1989, Leader spring wheat was seeded at Swift Current, Saskatchewan in north-south equidistant-rows (25-cm row spacing) and paired-rows (two rows 10 cm apart with 50 cm between the centre of each paired row). Seed and fertilizer were applied at recommended rates for the Brown soil zone. There were no significant differences (P > 0.10) in grain yield, water use or days to maturity between equidistant-row and paired-row seeding. The data suggest that under the environmental conditions of the Brown soil zone paired-row seeding may have no agronomic advantage over equidistant-row seeding.Key words: Paired-row seeding, water use, grain yield, spring wheat


1991 ◽  
Vol 71 (4) ◽  
pp. 1165-1168 ◽  
Author(s):  
G. R. Hughes ◽  
P. Hucl

Kenyon hard red spring wheat (Triticum aestivum L.) possesses excellent resistance to leaf rust and stem rust. Kenyon was developed using the backcross breeding method, resulting in the recovery of the maturity and wide adaptation of its recurrent parent Neepawa. Kenyon was developed at the University of Saskatchewan. Key words: Cultivar description, leaf rust, Triticum aestivum L., spring wheat


2015 ◽  
Vol 95 (4) ◽  
pp. 799-803 ◽  
Author(s):  
P. D. Brown ◽  
H. S. Randhawa ◽  
J. Mitchell Fetch ◽  
S. L. Fox ◽  
D. G. Humphreys ◽  
...  

Brown, P. D., Randhawa, H. S., Mitchell Fetch, J., Fox, S. L., Humphreys, D. G., Meiklejohn, M., Green, D., Wise, I., Fetch, T., Gilbert, J., McCallum, B. and Menzies, J. 2015. AAC Foray red spring wheat. Can. J. Plant Sci. 95: 799–803. AAC Foray, an orange wheat blossom midge (Sitodiplosis mosellana Géhin) tolerant hard red spring wheat (Triticum aestivum L.), combined high grain yield and good agronomic performance with excellent resistance to leaf and stem rust, and improved resistance to Fusarium head blight. AAC Foray had maturity, straw strength, and test weight similar to the check cultivars. AAC Foray is eligible for grade of the Canada Prairie Spring Red wheat market class.


Sign in / Sign up

Export Citation Format

Share Document