GENETIC VARIATION IN REACTION TO SCLEROTINIA STEM ROT IN Brassica SPECIES

1989 ◽  
Vol 69 (1) ◽  
pp. 229-232 ◽  
Author(s):  
F. S. SEDUN ◽  
G. SEGUIN-SWARTZ ◽  
G. F. W. RAKOW

Twenty-five cultivars and strains representing five Brassica species were tested under controlled conditions for their reaction to infection by Sclerotinia sclerotiorum, the causal agent of sclerotinia stem rot. Using the rate of stem lesion expansion as an indicator of the resistance of stem tissue to the pathogen, significant differences were present between species and among cultivars/strains within species. Although S0 parent-S1 progeny heritability of stem lesion expansion was low, S0 plants of Brassica campestris and B. juncea with increased sclerotinia stem rot resistance could be selected.Key words: Brassica, Sclerotinia sclerotiorum, stem rot resistance, selection technique

2015 ◽  
Vol 164 (5) ◽  
pp. 291-299 ◽  
Author(s):  
Ming Pei You ◽  
Margaret B. Uloth ◽  
Xi Xiang Li ◽  
Surinder S. Banga ◽  
Shashi K. Banga ◽  
...  

Plant Disease ◽  
2009 ◽  
Vol 93 (6) ◽  
pp. 673-673
Author(s):  
J. Strauss ◽  
H. R. Dillard

Hibiscus trionum L. (Venice mallow) is an annual weed widely distributed in the United States. In September of 2008, Venice mallow plants with bleached stems and necrotic tissues were observed in a commercial field of cabbage (Brassica oleracea L. cv. Moreton) in Geneva, NY. White, cottony mycelium and dark sclerotia were readily found on the stems and in the stem pith. Cabbage plants in direct contact with diseased Venice mallow also displayed signs and symptoms of infection by Sclerotinia sclerotiorum (Lib.) de Bary. Sclerotia from within diseased Venice mallow stems were placed in 9-cm-diameter petri plates on potato dextrose agar amended with 0.1 g/liter each of chloramphenicol and streptomycin (ABPDA) and incubated at room temperature. In addition, diseased stem tissue was surface disinfested for 3 min in 0.525% sodium hypochlorite solution, rinsed for 3 min in sterile distilled water, and placed on ABPDA. After 5 days, hyphae from the colony margin were excised and transferred to potato dextrose agar (PDA) plates. Fungal cultures consisting of white mycelia and medium-sized (~4 mm), black, irregular sclerotia were consistently recovered and identified as S. sclerotiorum based on morphological characteristics (1). Pathogenicity of two isolates (one from a sclerotium and one from stem tissue) was determined by inoculating seven 43-day-old Venice mallow plants growing in greenhouse pots (65 mm in diameter). Mycelia plugs (7 mm in diameter) were excised from 2-day-old PDA cultures of each isolate and placed on the stems at the soil line. Seven control plants were inoculated with noncolonized PDA plugs. All plants were enclosed in plastic bags for 72 h and placed under shade in the greenhouse with temperatures from 20 to 38°C (average 27°C). Symptoms similar to those observed in the affected fields were evident within 2 days after inoculation, while control plants remained symptomless. S. sclerotiorum was successfully recovered from infected plant tissue, fulfilling Koch's postulates. The experiment was repeated with similar results. To our knowledge, this is the first report of Sclerotinia stem rot of Hibiscus trionum caused by S. sclerotiorum (2,3). References: (1) L. Buchwaldt. Sclerotinia White Mold. Page 43 in: Compendium of Brassica Diseases, 1st ed. S. R. Rimmer et al., eds. The American Phytopathological Society, St. Paul, MN, 2007. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, MN, 1989. (3) C. Wehlburg et al. Index of Plant Diseases in Florida. Fla Dep. Agric. Consum. Serv. Bull. 11, 1975.


2006 ◽  
Vol 57 (10) ◽  
pp. 1131 ◽  
Author(s):  
C. X. Li ◽  
Hua Li ◽  
K. Sivasithamparam ◽  
T. D. Fu ◽  
Y. C. Li ◽  
...  

Sclerotinia stem rot, caused by Sclerotinia sclerotiorum, has become one of the most serious disease problems in oilseed rape-growing areas in Australia. Sources of resistance to this disease have been sought worldwide. In this study, germplasm comprising 42 Brassica napus and 12 Brassica juncea accessions from China and Australia, was screened for resistance to Sclerotinia stem rot under Western Australian field conditions. Resistance was confirmed in some germplasm from China and new sources of resistance were identified in germplasm from Australia. Furthermore, our study found that the severity of stem lesions was related to stem diameter and percentage of the host plants that were dead. It was evident that both stem lesion length and percentage of plant death were at the lowest level when the stem diameter was approximately 10 mm. Smaller or greater stem diameter resulted both in increased stem lesion length and plant death. Stem diameter may be a useful parameter in breeding cultivars of oilseed Brassicas with Sclerotinia resistance.


2003 ◽  
Vol 43 (2) ◽  
pp. 163 ◽  
Author(s):  
T. L. Hind ◽  
G. J. Ash ◽  
G. M. Murray

Surveys of petal infestation and stem infection conducted in 1998, 1999 and 2000 indicated that Sclerotinia sclerotiorum poses a threat to the Australian canola industry. Inoculum was present throughout all canola-growing regions of New South Wales and the stem disease was widespread throughout southern New South Wales. Percentage petal infestation increased over the 3 years surveyed with values ranging from 0 to 99.4%. The highest petal infestation values were observed in 2000 (maximum of 99.4%, mean of 82.2%), with lower mean values in 1998 (38.4%) and 1999 (49.6%). Stem infection ranged from 0 to 37.5% and most fields had less than 10% stem infection. Stem rot incidence before harvest did not relate to percentage petal infestation determined during flowering. This indicated that factors other than percentage petal infestation were important in influencing stem rot incidence. While there was no relationship between percentage petal infestation and stem rot incidence, stem infection never occurred without prior petal infestation.


Plant Disease ◽  
2019 ◽  
Vol 103 (7) ◽  
pp. 1613-1620 ◽  
Author(s):  
Xue-ping Huang ◽  
Jian Luo ◽  
Yu-fei Song ◽  
Bei-xing Li ◽  
Wei Mu ◽  
...  

Sclerotinia sclerotiorum, which can cause Sclerotinia stem rot, is a prevalent plant pathogen. This study aims to evaluate the application potential of benzovindiflupyr, a new generation of succinate dehydrogenase inhibitor (SDHI), against S. sclerotiorum. In our study, 181 isolates collected from different crops (including eggplant [n = 34], cucumber [n = 27], tomato [n = 29], pepper [n = 35], pumpkin [n = 32], and kidney bean [n = 25]) in China were used to establish baseline sensitivity to benzovindiflupyr. The frequency distribution of the 50% effective concentration (EC50) values of benzovindiflupyr was a unimodal curve, with mean EC50 values of 0.0260 ± 0.011 μg/ml, and no significant differences in mean EC50 existed among the various crops (P > 0.99). Benzovindiflupyr can effectively inhibit mycelial growth, sclerotial production, sclerotial shape, and myceliogenic and carpogenic germination of the sclerotia of S. sclerotiorum. In addition, benzovindiflupyr showed good systemic translocation in eggplant. Using benzovindiflupyr at 100 μg/ml yielded efficacies of 71.3 and 80.5% for transverse activity and cross-layer activity, respectively, which were higher than those of acropetal and basipetal treatments (43.6 and 44.7%, respectively). Greenhouse experiments were then carried out at two experimental sites for verification. Applying benzovindiflupyr at 200 g a.i. ha−1 significantly reduced the disease incidence and severity of Sclerotinia stem rot. Overall, the results demonstrated that benzovindiflupyr is a potential alternative product to control Sclerotinia stem rot.


Plant Disease ◽  
2015 ◽  
Vol 99 (7) ◽  
pp. 969-975 ◽  
Author(s):  
Congying Xu ◽  
Xiaoyu Liang ◽  
Yiping Hou ◽  
Mingguo Zhou

We determined the effects and efficacy of benzothiostrobin, a new strobilurin-derived fungicide, against the plant-pathogenic fungus Sclerotinia sclerotiorum (the causal agent of Sclerotinia stem rot). Mycelial growth and sclerotial germination in vitro were strongly inhibited by benzothiostrobin in the presence of salicylhydroxamic acid. On detached rapeseed leaves, benzothiostrobin at 40 μg/ml reduced lesion development by 87%. No cross-resistance was detected between benzothiostrobin and carbendazim, iprodione, fludioxonil, or boscalid. A formulated mixture of benzothiostrobin and fluazinam at 1:1 had synergistic activity against S. sclerotiorum in vitro. In field trials, benzothiostrobin alone or formulated with fluazinam at 1:1 (150 g a.i. ha−1) was significantly (P < 0.05) superior to iprodione in controlling Sclerotinia stem rot of rapeseed. These results suggest that benzothiostrobin has substantial potential for the control of Sclerotinia stem rot.


2012 ◽  
Vol 92 (2) ◽  
pp. 279-288 ◽  
Author(s):  
Maxime Bastien ◽  
Tung Thanh Huynh ◽  
Geneviève Giroux ◽  
Elmer Iquira ◽  
Sylvie Rioux ◽  
...  

Bastien, M., Huynh, T. T., Giroux, G., Iquira, E., Rioux, S. and Belzile, F. 2012. A reproducible assay for measuring partial resistance to Sclerotinia sclerotiorum in soybean. Can. J. Plant Sci. 92: 279–288. In eastern Canada, Sclerotinia stem rot in soybean is an important disease, and resistance is systematically assessed in cultivar performance trials. The reference method used in these trials closely mimics the natural infection process, but is very demanding, and its success is highly subject to environmental conditions. Here we describe a simple, quick and reproducible inoculation method to measure resistance to pathogen progression on the main stem. Importantly, this method is the first to reproducibly identify quantitative trait loci (QTLs) conferring partial resistance to Sclerotinia stem rot in soybean. In this method, a cotton pad saturated with a mycelial suspension is applied to a floral bud and resistance is estimated by measuring lesion length on the main stem. The method was found to discriminate clearly between known resistant and susceptible checks in both the field and greenhouse. Clear discrimination between 26 recombinant inbred lines (RILs) contrasted for QTLs controlling resistance to Sclerotinia stem rot was also achieved in four independent trials, and lesion length was significantly correlated among all trials. When tested on 38, 42 and 40 lines in registration trials, the results of this method were significantly correlated with those of the reference method in 2 of 3 yr.


Plant Disease ◽  
2004 ◽  
Vol 88 (4) ◽  
pp. 325-332 ◽  
Author(s):  
L. S. Kull ◽  
W. L. Pedersen ◽  
D. Palmquist ◽  
G. L. Hartman

Population variability of Sclerotinia sclerotiorum, the causal organism of Sclerotinia stem rot of soybean, was determined by mycelial compatibility grouping (MCG) and isolate aggressiveness comparisons. MCG and aggressiveness of S. sclerotiorum isolates from diverse hosts and geographic locations (Diverse Set, 24 isolates), from a soybean field in Argentina (Argentine Set, 21 isolates), and from soybean fields in DeKalb and Watseka, Illinois (DeKalb Set, 124 isolates, and Watseka Set, 130 isolates) were assessed. Among 299 isolates tested, 42 MCGs were identified, and 61% were represented by single isolates observed at single locations. Within the Diverse Set, 17 MCGs were identified; 1 MCG consisted of six isolates, and 16 MCGs consisted of one isolate each. Nine MCGs were identified within the Argentine field with two MCGs composed of either five or six isolates, two MCGs composed of two isolates, and the remaining composed of one isolate each. Each Illinois field was a mosaic of MCGs, but MCG frequencies differed between the two fields. Common MCGs were identified among the Diverse, DeKalb, and Watseka Sets, but no MCGs within the Argentine Set were observed with other sets. MCG 8 was the most frequently sampled and widely dispersed MCG and occurred at a frequency of 29, 36, and 62% in the Diverse, DeKalb, and Watseka Sets, respectively. Variation in isolate aggressiveness was assessed using a limited-term, plug inoculation technique. Isolate aggressiveness varied (P = 0.001) within the Diverse, Argentine, DeKalb, and Watseka Sets. Within widely dispersed MCGs, isolate aggressiveness varied (P ≤ 0.10); however, within locally observed MCGs detected only in single fields, isolate aggressiveness did not vary. Additionally, individual MCGs within the DeKalb and Watseka Sets differed in isolate aggressiveness. Using six soybean cultivars and six S. sclerotiorum isolates, no cultivar-isolate interaction was detected, but resistant and susceptible cultivars performed similarly when inoculated with either less or highly aggressive isolates. Pathogen population structure and variability in isolate aggressiveness may be important considerations in disease management systems.


Sign in / Sign up

Export Citation Format

Share Document